精英家教网 > 高中数学 > 题目详情
9.设函数$f(x)=\left\{\begin{array}{l}{e^x}-a(x<1)\\ ln(x+a)(x≥1).\end{array}\right.$其中a>-1.
①当a=0时,若f(x)=0,则x=1;
②若f(x)在(-∞,+∞)上是单调递增函数,则a的取值范围[ee-1-1,+∞).

分析 ①求出当a=0时的f(x)解析式,由f(x)=0,可得lnx=0,即可得到x的值;
②由题意可得a>-1,且e-1≤ln(1+a),解不等式即可得到所求范围.

解答 解:①当a=0时,f(x)=$\left\{\begin{array}{l}{{e}^{x},x<1}\\{lnx,x≥1}\end{array}\right.$,
由f(x)=0,可得lnx=0,解得x=1.
②若f(x)在(-∞,+∞)上是单调递增函数,
可得f(x)在x<1为递增,在x≥1为递增函数,
可得a>-1;
由增函数的定义可得e-1≤ln(1+a),
解得a≥ee-1-1.
综上可得a的范围是[ee-1-1,+∞).
故答案为:1,[ee-1-1,+∞).

点评 本题考查分段函数的运用,考查分段函数的自变量的求法和单调性的判断,注意运用指数函数和对数函数的单调性,考查运算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

15.已知数列{an}的前n项和Sn=n2+2n(n∈N*),数列{bn}的前n项和Tn=2n-1(n∈N*).
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)求数列{an•bn}的前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.在△ABC中,角A,B,C的对边分别为a,b,c,B=45°,c=2$\sqrt{2}$,b=$\frac{4\sqrt{3}}{3}$,那么角A=75°或15°.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.等比数列2048,1024,512,…中.最早出现小于1的项是第13项,其值为$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.抛物线y=$\frac{1}{4}{x}^{2}$的准线方程为(  )
A.x=-1B.x=-$\frac{1}{16}$C.y=-1D.y=-$\frac{1}{16}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.如图,在四棱锥P-ABCD中,PB⊥底面ABCD,底面ABCD为梯形,AD∥BC,AD⊥AB,且PB=AB=AD=3,BC=1.
(Ⅰ)若点F为PD上一点且$PF=\frac{1}{3}PD$,证明:CF∥平面PAB;
(Ⅱ)求二面角B-PD-A的大小;
(Ⅲ)在线段PD上是否存在一点M,使得CM⊥PA?若存在,求出PM的长;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.设函数y=2sin2x+2acosx+2a-1的最大值是-$\frac{1}{2}$.
(1)求a的值;
(2)求y取最大值时x的集合.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知点R是圆心为Q的圆(x+$\sqrt{3}$)2+y2=16上的一个动点,N($\sqrt{3}$,0)为定点,线段RN的中垂线与直线QR交于点T,设T点的轨迹为曲线C.
(1)求曲线C的方程;
(2)过点(1,0)做直线l与曲线C交于A,B两点,求A,B中点M的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.化简下列各式:
(1)sin23°cos7°+cos23°sin367°;
(2)(1+lg5)0+(-$\frac{8}{27}$)${\;}^{\frac{1}{3}}}$+lg$\frac{1}{5}$-lg2.

查看答案和解析>>

同步练习册答案