精英家教网 > 高中数学 > 题目详情
已知命题p:“方程x2+mx+1=0有两个不相等的负实根”;命题q:“函数f(x)=lg(4x2+mx-2x+1)的值域为R”,若p或q为真,p且q为假,求实数m的取值范围.
当p为真时,有
△>0
x1+x2<0
x1x2>0
m2-4>0
-m<0
即m>2
由命题q为真时,可以得到:△=(m-2)2-16≥0,∴m≤-2或m≥6
由题意:“p或q”真,“p且q”为假等价于
(1)P真Q假:
m>2
-2<m<6
得2<m<6
(2)Q真P假:
m≤2
m≤-2或m≥6
得 m≤-2
综合(1)(2)m的取值范围是(-∞,-2]∪(2,6)
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知命题P:方程x2+mx+1=0有两个不相等的负实数根;命题Q:函数f(x)=lg[4x2+(m-2)x+1]的定义域为实数集R,若P或Q为真,P且Q为假,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知命题P:方程x2+(m-3)x+1=0无实根,命题Q:方程x2+
y2m-1
=1
是焦点在y轴上的椭圆.若¬P与P∧Q同时为假命题,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•和平区一模)已知命题p:关于x的函数f(x)=2x2+ax+3在[1,+∞)上是增函数;命题q:关于x的方程x2-ax+4=0有实数根.若pVq为真命题,p∧q为假命题,则实数a的取值范围是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知命题p:方程
x2
2m
-
y2
m-2
=1
 表示焦点在x轴上的双曲线.命题q:曲线y=x2+(2m-3)x+1与x轴交于不同的两点,若p∧q为假命题,p∨q为真命题,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:单选题

已知命题p:方程(x-1)(x-2)=0的根是x=1;

命题q:方程(x-1)(x-2)=0的根是2,

则复合命题“p或q”是


  1. A.
    方程(x-1)(x-2)=0的根是x=1或方程(x-1)(x-2)=0的根是x=2
  2. B.
    方程(x-1)(x-2)=0的根是x=1或x=2
  3. C.
    方程(x-1)(x-2)=0的根或是x=1或是x=2
  4. D.
    以上均不对

查看答案和解析>>

同步练习册答案