精英家教网 > 高中数学 > 题目详情

【题目】四名同学根据各自的样本数据研究变量之间的相关关系,并求得回归直线方程,分别得到以下四个结论:

负相关且. ②负相关且

正相关且正相关且

其中一定不正确的结论的序号是( )

A. ①② B. ②③ C. ③④ D. ①④

【答案】B

【解析】根据题意,依次分析4个结论:

对于①、yx负相关且=2.756x+7.325,此结论正确,线性回归方程符合负相关的特征;

对于②、yx负相关且=3.476x+5.648,此结论误,由线性回归方程知,此两变量的关系是正相关;

对于③、yx正相关且=1.226x6.578,此结论误,由线性回归方程知,此两变量的关系是负相关;

对于④、yx正相关且=8.967x+8.163,此结论正确,线性回归方程符合正相关的特征;

故②③一定错误;

本题选择B选项.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,直线过点,且方向向量为;在以为极点, 轴的正半轴为极轴的极坐标系中,圆的极坐标方程为.

(1)求直线的参数方程;

(2)若直线与圆相交于两点,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】给出下列结论:

①若扇形的中心角为2,半径为1,则该扇形的面积为1;②函数是偶函数;③点是函数图象的一个对称中心;④函数上是减函数.其中正确结论的个数为( )

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】方程有两个不等的负根, 方程无实根,若“”为真,“”为假,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若函数 ,则对于不同的实数,函数的单调区间个数不可能是( )

A. 1个 B. 2个 C. 3个 D. 5个

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知双曲线方程为.

(1)求该双曲线的实轴长、虚轴长、离心率;

(2)若抛物线的顶点是该双曲线的中心,而焦点是其左顶点,求抛物线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知一家公司生产某种产品的年固定成本为6万元,每生产1千件需另投入2.9万元,设该公司一年内生产该产品千件并全部销售完,每千件的销售收入为万元,且.

(1)写出年利润(万元)关于年产量(千件)的函数解析式;

(2)求该公司生产这一产品的最大年利润及相应的年产量.(年利润=年销售收入-年总成本)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了分析某个高三学生的学习状态,对其下一阶段的学习提供指导性建议.现对他前次考试的数学成绩、物理成绩进行分析.下面是该生次考试的成绩.

数学

108

103

137

112

128

120

132

物理

74

71

88

76

84

81

86

(Ⅰ)他的数学成绩与物理成绩哪个更稳定?请给出你的说明;

(Ⅱ)已知该生的物理成绩与数学成绩是线性相关的,求物理成绩与数学成绩的回归直线方程

(Ⅲ)若该生的物理成绩达到90分,请你估计他的数学成绩大约是多少?

(附:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=log2(2x﹣1).
(1)求f(x)的定义域;
(2)判断函数f(x)的单调性,并用定义证明.

查看答案和解析>>

同步练习册答案