精英家教网 > 高中数学 > 题目详情
18.在△ABC中,A,B,C的对边分别是a,b,c,已知$\frac{cosA-\sqrt{3}cosC}{cosB}=\frac{\sqrt{3}c-a}{b}$.
(1)求$\frac{c}{a}$的值.
(2)若△ABC的面积为$\sqrt{2}$,cosB=$\frac{\sqrt{3}}{3}$,求b的值.

分析 (1)由$\frac{cosA-\sqrt{3}cosC}{cosB}=\frac{\sqrt{3}c-a}{b}$,利用正弦定理可得:$\frac{cosA-\sqrt{3}cosC}{cosB}$=$\frac{\sqrt{3}sinC-sinA}{sinB}$,化简可得sinC=$\sqrt{3}$sinA,再利用正弦定理即可得出.
(2)由cosB=$\frac{\sqrt{3}}{3}$,可得sinB=$\frac{\sqrt{6}}{3}$.利用S△ABC=$\frac{1}{2}$acsinB=$\sqrt{2}$,可得ac=2$\sqrt{3}$,与$\frac{c}{a}$=$\sqrt{3}$,联立解得即可.

解答 解:(1)∵$\frac{cosA-\sqrt{3}cosC}{cosB}=\frac{\sqrt{3}c-a}{b}$,
由正弦定理可得:$\frac{cosA-\sqrt{3}cosC}{cosB}$=$\frac{\sqrt{3}sinC-sinA}{sinB}$,
化为sin(A+B)=$\sqrt{3}$sin(B+C),
∴sinC=$\sqrt{3}$sinA,
由正弦定理可得:$\frac{c}{a}$=$\frac{sinC}{sinA}$=$\sqrt{3}$.
(2)∵cosB=$\frac{\sqrt{3}}{3}$,∴sinB=$\frac{\sqrt{6}}{3}$.
∵S△ABC=$\frac{1}{2}$acsinB=$\frac{1}{2}ac×\frac{\sqrt{6}}{3}$=$\sqrt{2}$,∴ac=2$\sqrt{3}$.
又$\frac{c}{a}$=$\sqrt{3}$,联立解得c=$\sqrt{6}$,a=$\sqrt{2}$.

点评 本题考查了正弦定理的应用、和差公式、同角三角函数基本关系式、三角形面积计算公式,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

8.如果两条异面直线称为“一对”,那么在正方体的十二条棱中共有异面直线(  )
A.12对B.24对C.36对D.48对

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.如图,A,B,C是圆O上的三等分点,点P在劣弧$\widehat{BC}$上,且PB=2,PC=1,若实数x,y,z满足x$\overrightarrow{PA}$+y$\overrightarrow{PB}$+z$\overrightarrow{PC}$=$\overrightarrow{0}$.则x:y:z=(  )
A.(-1):2:3B.(-3):2:1C.(-2):3:6D.(-6):3:2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知函数f(x)=(1+$\frac{1}{tanx}$)sin2x+msin(x+$\frac{π}{4}$)sin(x-$\frac{π}{4}$).
(1)当m=0时,若f(x)=$\frac{1}{2}$,求sin4x;
(2)当tanα=2时,f(α)=$\frac{3}{5}$,求m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知变量x,y满足$\left\{\begin{array}{l}{2x-y≤0}\\{x-3y+5≥0}\end{array}\right.$,则z=x+y的最大值为3.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.当0<k<1时,关于x的方程|1-x2|=kx+k的实根个数是3.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知x+x-1=3,求$\frac{{x}^{\frac{1}{2}}+{x}^{-\frac{1}{2}}}{{x}^{2}+{x}^{-2}+3}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知过点p(0,-2)的直线l与圆C:x2+y2-10x-2y+22=0相交于A、B两点,若满足5$\overrightarrow{PA}$=3$\overrightarrow{PB}$,则这条直线的斜率为$\frac{7}{23}$或1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.(1)若函数y=ax+1-a(a>0)的图象在第一、三、四象限内,则实数a的取值范围是a>2; (2)要使得函数y=($\frac{1}{2}$)x-1+m的图象不经过第一象限,则实数m的取值范围是m≤-2.

查看答案和解析>>

同步练习册答案