精英家教网 > 高中数学 > 题目详情
已知椭圆C1,抛物线C2的焦点均在y轴上,C1的中心和C2的顶点均为坐标原点O,从每条曲线上取两个点,将其坐标记录于下表中:
x0-1
2
4
y-2
2
1
16
-21
(Ⅰ)求分别适合C1,C2的方程的点的坐标;
(Ⅱ)求C1,C2的标准方程.
(Ⅰ)椭圆C1,抛物线C2的焦点均在y轴上,
∴抛物线方程可设为x2=my,
将(4,1)和(-1,
1
16
)代入抛物线方程得到的解相同,且m=16;
∴(0,-2
2
)和(
2
,-2)在椭圆C1上;
(Ⅱ)由(Ⅰ)知,抛物线方程为x2=16y.
设椭圆C1的标准方程为:
y2
a2
+
x2
b2
=1(a>b>0)

将(0,-2
2
)和(
2
,-2)代入可得a=2
2
,b=2,
∴椭圆C1的标准方程为
y2
8
+
x2
4
=1
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知某椭圆的焦点是F1(-4,0)、F2(4,0),过点F2并垂直于x轴的直线与椭圆的一个交点为B,且|F1B|+|F2B|=10,椭圆上不同的两点A(x1,y1)、C(x2,y2)满足条件:|F2A|、|F2B|、|F2C|成等差数列.
(Ⅰ)求该椭圆的方程;
(Ⅱ)求弦AC中点的横坐标.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

椭圆
x2
4
+
y2
5
=1
的一个焦点坐标是(  )
A.(3,0)B.(0,3)C.(1,0)D.(0,1)

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

椭圆的中心在原点,焦点在x轴上,一个焦点与短轴两端点的连线互相垂直,且这个焦点到长轴上较近的端点的距离是
10
-
5
,则此椭圆的方程是:______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆的一个顶点为A(0,-1),焦点在x轴上.若右焦点到直线x-y+2
2
=0的距离为3.
(1)求椭圆的方程;
(2)设椭圆与直线y=kx+m(k≠0)相交于不同的两点M、N.当|AM|=|AN|时,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆的中心在原点,它在x轴上的一个焦点与短轴两端点连线互相垂直,且此焦点和x轴上的较近端点的距离为4(
2
-1),求椭圆方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆的焦点在x轴上,长轴长为12,离心率为
1
3
,求椭圆的标准方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

如图:从椭圆
x2
a2
+
y2
b2
=1(a>b>0)
上一点M向x轴作垂线,恰好通过椭圆的左焦点F1(-c,0),且
.
AB
.
OM
,则a,b,c必满足______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知椭圆C的短轴长为6,离心率为
4
5
,则椭圆C的焦点F到长轴的一个端点的距离为______.

查看答案和解析>>

同步练习册答案