精英家教网 > 高中数学 > 题目详情

【题目】由中央电视台综合频道和唯众传媒联合制作的开讲啦是中国首档青年电视公开课,每期节目由一位知名人士讲述自己的故事,分享他们对于生活和生命的感悟,给予中国青年现实的讨论和心灵的滋养,讨论青年们的人生问题,同时也在讨论青春中国的社会问题,受到青年观众的喜爱,为了了解观众对节目的喜爱程度,电视台随机调查了AB两个地区的100名观众,得到如表的列联表,已知在被调查的100名观众中随机抽取1名,该观众是B地区当中非常满意的观众的概率为

非常满意

满意

合计

A

30

15

B

合计

完成上述表格并根据表格判断是否有的把握认为观众的满意程度与所在地区有关系;

若以抽样调查的频率为概率,从A地区随机抽取3人,设抽到的观众非常满意的人数为X,求X的分布列和期望.

附:参考公式:

【答案】1)没有的把握认为观众的满意程度与所在地区有关系.(2)见解析,期望为2

【解析】

1)完成列联表,求出,从而没有的把握认为观众的满意程度与所在地区有关系.

2)从地区随机抽取人,抽到的观众非常满意的概率为,随机抽取人,的可能取值为,由此能求出的分布列和.

(1)完成列联表如下:

非常满意

满意

合计

A

30

15

45

B

35

20

55

合计

65

35

100

没有的把握认为观众的满意程度与所在地区有关系.

2)从地区随机抽取1人,抽到的观众非常满意的概率为

随机抽取人,的可能取值为.

的分布列为:

X

0

1

2

3

P

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数.

1)当时,求函数的单调区间及极值;

2)讨论函数的零点个数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线过点,且P到抛物线焦点的距离为2直线过点,且与抛物线相交于AB两点.

(Ⅰ)求抛物线的方程;

(Ⅱ)若点Q恰为线段AB的中点,求直线的方程;

(Ⅲ)过点作直线MAMB分别交抛物线于CD两点,请问CDQ三点能否共线?若能,求出直线的斜率;若不能,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,则下述结论中错误的是(

A.有且仅有个零点,则有且仅有个极小值点

B.有且仅有个零点,则上单调递增

C.有且仅有个零点,则的范围是

D.图像关于对称,且在单调,则的最大值为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在平行六面体ABCDA1B1C1D1中,AA1A1DABBC,∠ABC120°.

1)证明:ADBA1

2)若平面ADD1A1⊥平面ABCD,且A1DAB,求直线BA1与平面A1B1CD所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】椭圆焦点在轴上,离心率为,上焦点到上顶点距离为.

1)求椭圆的标准方程;

2)直线与椭圆交与两点,为坐标原点,的面积,则是否为定值,若是求出定值;若不是,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知是定义在上的函数,满足.

1)证明:2是函数的周期;

2)当时,,求时的解析式,并写出)时的解析式;

3)对于(2)中的函数,若关于x的方程恰好有20个解,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数a>0a≠1)是奇函数.

1)求常数k的值;

2)若已知f1=,且函数在区间[1+∞])上的最小值为—2,求实数m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线,在x轴正半轴上任意选定一点,过点M作与x轴垂直的直线交CPO两点.

1)设,证明:抛物线在点PQ处的切线方程的交点N与点M关于原点O对称;

2)通过解答(1),猜想求过抛物线上一点(不为原点)的切线方程的一种做法,并加以证明.

查看答案和解析>>

同步练习册答案