【题目】已知数列的前项和为,,且时,数列满足,,对任意,都有.
(1)求数列,的通项公式;
(2)令若对任意的,不等式恒成立,试求实数的取值范围.
科目:高中数学 来源: 题型:
【题目】如图,在正四面体P-ABC中,D、E、F分别是AB、BC、CA的中点,下列四个结论不成立的是 ( )
A. BC∥平面PDF B. DF⊥平面PAE
C. 平面PDF⊥平面PAE D. 平面PDE⊥平面ABC
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】以下给出五个命题,其中真命题的序号为______
①函数在区间上存在一个零点,则的取值范围是或;
②“任意菱形的对角线一定相等”的否定是“菱形的对角线一定不相等”;
③,;
④若,则;
⑤“”是“成等比数列”的充分不必要条件.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】过抛物线的焦点作直线交抛物线于,两点,若,则的值为( )
A. 10 B. 8 C. 6 D. 4
【答案】B
【解析】
根据过抛物线焦点的弦长公式,利用题目所给已知条件,求得弦长.
根据过抛物线焦点的弦长公式有.故选B.
【点睛】
本小题主要考查过抛物线焦点的弦长公式,即.要注意只有过抛物线焦点的弦长才可以使用.属于基础题.
【题型】单选题
【结束】
10
【题目】已知椭圆: 的右顶点、上顶点分别为、,坐标原点到直线的距离为,且,则椭圆的方程为( )
A. B. C. D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知双曲线的中心在原点,焦点为,且离心率.
(1)求双曲线的方程;
(2)求以点为中点的弦所在的直线方程.
【答案】(1);(2).
【解析】
(1)根据焦点坐标求得,根据离心率及求得的值,进而求得双曲线的标准方程.(2)设出两点的坐标,利用点差法求得弦所在直线的斜率,再由点斜式求得弦所在的直线方程.
(1) 由题可得,,∴,,
所以双曲线方程 .
(2)设弦的两端点分别为,,
则由点差法有: , 上下式相减有:
又因为为中点,所以,,
∴,所以由直线的点斜式可得,
即直线的方程为.
经检验满足题意.
【点睛】
本小题主要考查双曲线标准方程的求法,考查利用点差法求解有关弦的中点有关的问题,属于中档题
【题型】解答题
【结束】
19
【题目】某投资公司计划投资,两种金融产品,根据市场调查与预测,产品的利润与投资金额的函数关系为,产品的利润与投资金额的函数关系为.(注:利润与投资金额单位:万元)
(1)该公司已有100万元资金,并全部投入,两种产品中,其中万元资金投入产品,试把,两种产品利润总和表示为的函数,并写出定义域;
(2)试问:怎样分配这100万元资金,才能使公司获得最大利润?其最大利润为多少万元?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知平面内动点到两定点和的距离之和为4.
(Ⅰ)求动点的轨迹的方程;
(Ⅱ)已知直线和的倾斜角均为,直线过坐标原点且与曲线相交于, 两点,直线过点且与曲线是交于, 两点,求证:对任意, .
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com