【题目】双曲线C的渐近线方程为,一个焦点为F(0,﹣8),则该双曲线的标准方程为_____.已知点A(﹣6,0),若点P为C上一动点,且P点在x轴上方,当点P的位置变化时,△PAF的周长的最小值为_____.
科目:高中数学 来源: 题型:
【题目】小明每天从家步行去学校,有两条路线可以选择,第一条路线,需走天桥,不用等红灯,平均用时910秒;第二条路线,要经过两个红绿灯路口,如图,A处为小明家,D处为学校,走路段需240秒,在B处有一红绿灯,红灯时长120秒,绿灯时长30秒,走路段需450秒,在C处也有一红绿灯,红灯时长100秒,绿灯时长50秒,走路段需200秒.小明进行了60天的试验,每天都选择第二条路线,并记录了在B处等待红灯的时长,经统计,60天中有48天在B处遇到红灯,根据记录的48天等待红灯时长的数据绘制了下面的频率分布直方图.已知B处和C处的红灯亮起的时刻恰好始终保持相同,且红绿灯之间切换无时间间隔.
(1)若小明选择第二条路线,设当小明到达B处的时刻为B处红灯亮起后的第x秒()时,小明在B处等待红灯的时长为y秒,求y关于x的函数的解析式;
(2)若小明选择第二条路线,请估计小明在B处遇到红灯的概率,并问小明是否可能在B处和C处都遇到红灯;
(3)若取区间中点作为该区间对应的等待红灯的时长,以这两条路线的平均用时作为决策依据,小明应选择哪一条路线?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】袋子A和B中装有若干个均匀的红球和白球,从A中摸出一个红球的概率是,从B中摸出一个红球的概率为p.
(1)从A中有放回地摸球,每次摸出一个,有3次摸到红球即停止.求恰好摸5次停止的概率;
(2)若A,B两个袋子中的球数之比为,将A,B中的球装在一起后,从中摸出一个红球的概率是,求p的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】厂家在产品出厂前,需对产品做检验.厂家将一批产品发给商家时,商家按合同规定也需随机抽取一定数量的产品做检验,以决定是否接收这批产品.
(1)若厂家库房中的每件产品合格的概率为0.8,从中任意取出4件进行检验,求至少有1件是合格品的概率;
(2)若厂家发给商家20件产品,其中有3件不合格.按合同规定该商家从中任取2件,都进行检验,只有2件都合格时才接收这批产品,否则拒收.求该商家拒收这批产品的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知,,,,,,边上一点,这里异于.由引边的垂线是垂足,再由引边的垂线是垂足,又由引边的垂线是垂足.同样的操作连续进行,得到点,,.设,如图所示.
(1)求的值;
(2)某同学对上述已知条件的研究发现如下结论:,问该同学这个结论是否正确并说明理由;
(3)用和表示.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】一排个空位,四人就坐其中的个位子.
(1)若每人左、右两边都有空位,有几种坐法?
(2)若个空位中,个相连,另个也相连,但个不连在一起,有几种坐法?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标平面上的一列点,简记为.若由构成的数列满足,其中为方向与轴正方向相同的单位向量,则称为点列.
(1)判断,是否为点列,并说明理由;
(2)若为点列,且点在点的右上方.任取其中连续三点,判断的形状(锐角三角形、直角三角形、钝角三角形),并予以证明;
(3)若为点列,正整数,满足,求证:.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com