精英家教网 > 高中数学 > 题目详情
已知对于任意a,b∈R,都有f(a+b)+f(a-b)=2f(a)•f(b),且f(0)≠0.
(1)求证f(x)为偶函数;
(2)若存在正数m使得f(m)=0,求满足f(x+T)=f(x)的一个值T(T≠0).
考点:抽象函数及其应用,函数奇偶性的性质
专题:计算题,证明题,函数的性质及应用
分析:(1)先根据f(a+b)+f(a-b)=2f(a)f(b)得到f(-x)=f(x),从而很容易得到函数f(x)的奇偶性.
(2)问题就是:存在T≠0,使f(x+T)=f(x)恒成立,可T为何值呢?T与 m又有何关系?不难发现一个特殊函数f(x)=cosx满足题设条件,且cos0=1,而f(
π
2
)=0,又y=cosx为周期函数且周期为2π,它是
π
2
的4倍,于是猜想f(x)是以4m为周期的周期函数.故在条件式中令a=m,b=x,即可得到T=4m.
解答: (1)证明:令a=b=0,得2f(0)=2f2(0).
∵f(0)≠0,∴f(0)=1.
又令a=0,b=x,则f(x)+f(-x)=2f(0)f(x),
∴f(-x)=f(x),即f(x)为偶函数.
(2)解:在条件式中令a=m,b=x,
则f(m+x)+f(m-x)=2f(m)f(x)=0,
故f(m+x)=-f(m-x).
令x取m+x,则
f(2m+x)=-f(-x)=-f(x).
∴f(4m+x)=-f(2m+x)=-(-f(x))=f(x),
于是f(x)是以4m为周期的周期函数.
则T可取4m.
点评:本题主要考查了抽象函数及其应用,对抽象的问题若一般性难以解决的问题,不妨剖析一个特殊情形,进而可望从结论或方法上得到某种启发,亦可构造一个满足条件的特殊模型,从中发现寓于一般情形之中的隐含性质.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

要得到函数y=cosx的图象,只需将函数y=sin(2x+
π
4
)的图象上所有的点的(  )
A、横坐标缩短到原来的
1
2
倍(纵坐标不变),再向左平行移动
π
8
个单位长度
B、横坐标缩短到原来的
1
2
倍(纵坐标不变),再向右平行移动
π
4
个单位长度
C、横坐标伸长到原来的2倍(纵坐标不变),再向左平行移动
π
4
个单位长度
D、横坐标伸长到原来的2倍(纵坐标不变),再向右平行移动
π
8
个单位长度

查看答案和解析>>

科目:高中数学 来源: 题型:

幂函数f(x)=xα过点(2,
1
2
)
,则f(x)的定义域为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=log2(x2-6)的定义域为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

在三棱锥O-ABC中,已知OA,OB,OC两两垂直.OA=2,OB=
6
,直线AC与平面OBC所
成的角为45°.
(Ⅰ)求证:OB⊥AC;
(Ⅱ)求二面角O-AC-B的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

若x,y满足条件
3x-5y+6≥0
2x+3y-15≤0
y≥0
,当且仅当x=y=3时,z=ax-y取最小值,则实数a的取值范围是(  )
A、(-
3
4
2
3
B、(-
2
3
3
4
C、(-
2
3
3
5
D、(
3
4
3
5

查看答案和解析>>

科目:高中数学 来源: 题型:

如图所示,四棱锥P-ABCD的顶点B、D、P分别在空间直角坐标系的坐标轴上,顶点A与原点重合;底面ABCD中,AB⊥BC,且BC=PA=3,AD=y;三棱锥P-ABC的体积为5.
(Ⅰ)求面PDC的一个法向量(用y表示);
(Ⅱ)当二面角C-PD-A为直二面角时,求PB与面PDC所成的角的正弦值;
(Ⅲ)当二面角C-PD-A的余弦值为-
3
7
时,试探求AD的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知x=a1是函数f(x)=
1
4
x4+bx2+cx+d的唯一极值点且为最小值点,若存在a2∈(a1,a1+1)使得f′(a2)=0,则关于x的函数g(x)=f(x)-
1
2
x2+a1x在(a1,a2)上的零点的说法正确的是(  )
A、至多只有一个零点
B、只有唯一的零点
C、可能存在两个零点
D、可能存在四个零点

查看答案和解析>>

科目:高中数学 来源: 题型:

一个几何体的三视图如图所示,其中主视图、俯视图与左视图均是半径为2的圆,则这个几何体的表面积是
 

查看答案和解析>>

同步练习册答案