精英家教网 > 高中数学 > 题目详情
设函数f(x)=
3x
x+3
,观察:f1(x)=f(x)=
3x
x+3
f2(x)=f(f1(x))=
3x
2x+3
f3(x)=f(f2(x))=
x
x+1
f4(x)=f(f3(x))=
3x
4x+3
,…
根据以上事实,由归纳推理可得:
当n∈N*且n≥2时,fn(x)=f(fn-1(x))=
 
分析:将每个函数解析式的分子都化为3x,则分母依次是x+3,2x+3,3x+3,4x+3,…,规律得出.
解答:解:将每个函数解析式的分子都化为3x,则分母的项依次是
x+3,2x+3,3x+3,4x+3,…,
推理得出第n的解析式的分母应为nx+3,
所以fn(x)=f(fn-1(x))=
3x
nx+3

故答案为:
3x
nx+3
点评:本题考查归纳推理,数字规律探求的能力.实际上可看作给出一个数列的前几项写出数列的通项公式.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设函数f(x)=
3x+4
x2+1
,g(x)=
6a2
x+a
,a
1
3

(1)求函数f(x)的极大值与极小值;
(2)若对函数的x0∈[0,a],总存在相应的x1,x2∈[0,a],使得g(x1)≤f(x0)≤g(x2)成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=
3x,x≤0
log3x,x>0
,则f[f(-1)]=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=
3x+1
x2-1
-
2
x-1
(x≠1)
a(x=1)
在x=1处连续,则a的值为(  )
A、
1
2
B、
1
4
C、-
1
3
D、-
1
2

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=
3x,x∈(-∞,1]
log81x,x∈(1,+∞).
f(f(
1
4
))
的值为
1
16
1
16

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=
3
x
+lnx
,则(  )

查看答案和解析>>

同步练习册答案