精英家教网 > 高中数学 > 题目详情

【题目】太极图被称为中华第一图.广为人知的太极图,其形状如阴阳两鱼互抱在一起,因而被称为阴阳鱼太极鱼.已知,下列命题中:①在平面直角坐标系中表示的区域的面积为;②,使得;③,都有成立;④设点,则的取值范围是.其中真命题的个数为(

A.1B.2C.3D.4

【答案】B

【解析】

集合A表示的图形,分别分析选项,得到正确答案,

①根据图象,直接求判断集合A的面积是圆面积的一半;

②转化为两圆是否相交问题;

③设,表示斜率为的直线,表示纵截距,转化为线性规划问题;

④变形为,先求的范围,最后求的范围.

①如图,根据对称性可知,集合表示的面积占圆面积的一半,,故①不正确;

,整理为,以为圆心,的圆,与的圆的圆心距,可知两圆相交,有2个交点,所以,使得,故②正确;

③设,表示斜率为的直线,表示纵截距,如图,当直线与圆相切时,取得最大值,此时圆心到直线的距离,解得,如图,舍去,所以的最大值是,如图,当直线与相切时,取得最小值,圆心到直线的距离 ,如图舍去,所以的最小值是,所以,都有成立,③正确;

表示可行域内的点与点连线的斜率,

,当直线与圆相切时,圆心到直线的距离,解得,如图可知

当直线过点时,斜率,其他满足条件的直线夹在这两直线之间,所以,故④不正确.

故只有②③正确.

故选:B

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知椭圆,长半轴长与短半轴长的差为,离心率为

1)求椭圆的标准方程;

2)若在轴上存在点,过点的直线分别与椭圆相交于两点,且为定值,求点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某避暑山庄拟对一个半径为1百米的圆形地块(如图)进行改造,拟在该地块上修建一个等腰梯形,其中,圆心在梯形内部,设.当该游泳池的面积与周长之比最大时为“最佳游泳池”.

(1)求梯形游泳池的面积关于的函数关系式,并指明定义域;

(2)求当该游泳池为“最佳游泳池”时的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某公司租用一个门店作展馆,准备对其公司生产的某型产品进行为期一年的展出。为此,需对门店进行装修,展出结束,门店不再使用,现市面上有某品牌的型和型两种节能灯,假定型节能灯使用寿命都超过小时,经销商对型节能灯使用寿命进行了调查统计,得到如下频率分布直方图:

门店装修时,需安装该品牌节能灯支(同种型号).经了解,瓦和B型瓦的两种节能灯照明效果相当,都适合安装。已知型和型节能灯每支的价格分别为元、元,当地商业电价为元/千瓦时。假定该店面一年周转期的照明时间为小时,若正常营业期间灯坏了立即购买同型灯管更换。(用频率估计概率)

(1)根据频率直方图估算B型节能灯的平均使用寿命;

(2)根据统计知识,若一支灯管一年内需要更换的概率为,那么支灯管一年内估计需要更换支.若该商家新店面全部安装型节能灯,试估计一年内需更换的支数;

(3)若只考虑灯的成本和消耗电费,你认为该商家应选择哪种型号的节能灯,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2018年的政府工作报告强调,要树立绿水青山就是金山银山理念,以前所未有的决心和力度加强生态环境保护.某地科技园积极检查督导园区内企业的环保落实情况,并计划采取激励措施引导企业主动落实环保措施,下图给出的是甲、乙两企业2012年至2017年在环保方面投入金额(单位:万元)的柱状图.

(Ⅰ)分别求出甲、乙两企业这六年在环保方面投入金额的平均数;(结果保留整数)

(Ⅱ)园区管委会为尽快落实环保措施,计划对企业进行一定的奖励,提出了如下方案:若企业一年的环保投入金额不超过200万元,则该年不奖励;若企业一年的环保投入金额超过200万元,不超过300万元,则该年奖励20万元;若企业一年的环保投入金额超过300万元,则该年奖励50万元.

(ⅰ)分别求出甲、乙两企业这六年获得的奖励之和;

(ⅱ)现从甲企业这六年中任取两年对其环保情况作进一步调查,求这两年获得的奖励之和不低于70万元的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2018年的政府工作报告强调,要树立绿水青山就是金山银山理念,以前所未有的决心和力度加强生态环境保护.某地科技园积极检查督导园区内企业的环保落实情况,并计划采取激励措施引导企业主动落实环保措施,下图给出的是甲、乙两企业2012年至2017年在环保方面投入金额(单位:万元)的柱状图.

(Ⅰ)分别求出甲、乙两企业这六年在环保方面投入金额的平均数;(结果保留整数)

(Ⅱ)园区管委会为尽快落实环保措施,计划对企业进行一定的奖励,提出了如下方案:若企业一年的环保投入金额不超过200万元,则该年不奖励;若企业一年的环保投入金额超过200万元,不超过300万元,则该年奖励20万元;若企业一年的环保投入金额超过300万元,则该年奖励50万元.

(ⅰ)分别求出甲、乙两企业这六年获得的奖励之和;

(ⅱ)现从甲企业这六年中任取两年对其环保情况作进一步调查,求这两年获得的奖励之和不低于70万元的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(Ⅰ)当时,判断函数的单调性;

(Ⅱ)当时,证明:.(为自然对数的底数)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆: 的长轴长为4,左、右顶点分别为,经过点的直线与椭圆相交于不同的两点(不与点重合).

(Ⅰ)当,且直线 轴时, 求四边形的面积;

(Ⅱ)设,直线与直线相交于点,求证:三点共线.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】将正方形ABCD沿对角线BD折成直二面角A-BD-C,有如下四个结论

ACBD

ACD是等边三角形;

AB与平面BCD成60°的角;

AB与CD所成的角是60°.

其中正确结论的序号是________

查看答案和解析>>

同步练习册答案