【题目】如图,四棱锥M-ABCD中,MB⊥平面ABCD,四边形ABCD是矩形,AB=MB,E、F分别为MA、MC的中点.
(1)求证:平面BEF⊥平面MAD;
(2)若,求三棱锥E-ABF的体积.
【答案】(1)见解析;(2)
【解析】
(1)先证明BE⊥平面MAD,再证平面BEF⊥平面MAD;(2)利用体积变换求三棱锥E-ABF的体积.
(1)因为MB⊥平面ABCD,所以MB⊥AD,
又因为四边形ABCD是矩形,所以AD⊥AB,
因为AB∩MB=B,所以AD⊥平面MAB,
因为BE平面MAB,所以AD⊥BE,
又因为AB=MB,E为MA的中点,
所以BE⊥MA,因为MA∩AD=A,
所以BE⊥平面MAD,
又因为BE平面BEF,
所以平面BEF⊥平面MAD.
(2)因为AD∥BC,所以BC⊥面MAB,又因为F为MC的中点,
所以F到面MAB的距离,
又因为MB⊥平面ABCD,AB=MB=,E为MA的中点,
所以,
所以.
科目:高中数学 来源: 题型:
【题目】选修4 — 4:坐标系与参数方程
在直角坐标系中,直线的参数方程为(为参数),以原点为极点, 轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为().
(1)分别写出直线的普通方程与曲线的直角坐标方程;
(2)已知点,直线与曲线相交于两点,若,求的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,已知矩形ABCD,,,AF⊥平面ABC,且.E为线段DC上一点,沿直线AE将△ADE翻折成,M为的中点,则三棱锥体积的最小值是________.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某数学小组从医院和气象局获得2018年1月至6月份每月20的昼夜温差,()和患感冒人数(/人)的数据,画出如图的折线图.
(1)建立关于的回归方程(精确到0.01),预测2019年1月至6月份昼夜温差为时患感冒的人数(精确到整数);
(2)求与的相关系数,并说明与的相关性的强弱(若,则认为与具有较强的相关性),
参考数据:,,,,
相关系数:,回归直线方程是,,
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为贯彻落实党中央全面建设小康社会的战略部署,某贫困地区的广大党员干部深入农村积极开展“精准扶贫”工作.经过多年的精心帮扶,截至2018年底,按照农村家庭人均年纯收入8000元的小康标准,该地区仅剩部分家庭尚未实现小康.2019年7月,为估计该地能否在2020年全面实现小康,统计了该地当时最贫困的一个家庭2019年1至6月的人均月纯收入,作出散点图如下:
根据相关性分析,发现其家庭人均月纯收入与时间代码之间具有较强的线性相关关系(记2019年1月、2月……分别为,,…,依此类推),由此估计该家庭2020年能实现小康生活.但2020年1月突如其来的新冠肺炎疫情影响了奔小康的进展,该家庭2020年第一季度每月的人均月纯收入均只有2019年12月的预估值的.
(1)求该家庭2020年3月份的人均月纯收人;
(2)如果以该家庭3月份人均月纯收入为基数,以后每月的增长率为,为使该家庭2020年能实现小康生活,至少应为多少?(结果保留两位小数)
参考数据:,,,.
参考公式:线性回归方程中,,;
(,).
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知动圆Q经过定点,且与定直线相切(其中a为常数,且).记动圆圆心Q的轨迹为曲线C.
(1)求C的方程,并说明C是什么曲线?
(2)设点P的坐标为,过点P作曲线C的切线,切点为A,若过点P的直线m与曲线C交于M,N两点,则是否存在直线m,使得?若存在,求出直线m斜率的取值范围;若不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com