精英家教网 > 高中数学 > 题目详情
过双曲线
x2
a2
-
y2
b2
=1(a>0,b>0)
的左焦点F1作斜率为1的直线,该直线与双曲线的两条渐近线的交点分别为A、B,若
F1A
=
AB
,则双曲线的渐近线方程为(  )
分析:由题意可得直线l的方程为:y=x+c,与两条渐近线方程y=±
b
a
x
分别联立,解得A,B的坐标.利用
F1A
=
AB
,可知点A是线段F1B的中点,即可得出a,b的关系.
解答:解:由题意可得直线l的方程为:y=x+c,与两条渐近线方程y=±
b
a
x
分别联立,解得A(
-ac
a+b
bc
a+b
)
,B(
ac
b-a
bc
b-a
)

F1A
=
AB
,∴
-ac
a+b
=
-c+
ac
b-a
2
,化为b=3a,
则双曲线的渐近线为y=±3x.即3x±y=0.
故选A.
点评:熟练掌握双曲线的渐近线、直线的方程与交点等是解题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

过双曲线
x2
a2
-
y2
b2
=1
(a>0,b>0)的一个焦点F引它的渐近线的垂线,垂足为M,延长FM交y轴于E,若FM=ME,则该双曲线的离心率为(  )
A、3
B、2
C、
3
D、
2

查看答案和解析>>

科目:高中数学 来源: 题型:

过双曲线
x2
a2
-
y2
b2
=1
(a>0,b>0)的右焦点F作圆x2+y2=a2的切线FM(切点为M),交y轴于点P.若M为线段FP的中点,则双曲线的离心率是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

过双曲线
x2
a2
-
y2
b2
=1
的左焦点F作⊙O:x2+y2=a2的两条切线,记切点为A,B,双曲线左顶点为C,若∠ACB=120°,则双曲线的渐近线方程为(  )
A、y=±
3
x
B、y=±
3
3
x
C、y=±
2
x
D、y=±
2
2
x

查看答案和解析>>

科目:高中数学 来源: 题型:

过双曲线
x2
a2
-
y2
b2
=1(a>0,b>0)的一个焦点F引它到渐进线的垂线,垂足为M,延长FM交y轴于E,若
FM
=2
ME
,则该双曲线离心率为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

过双曲线
x2
a2
-
y2
b2
=1(a>0,b>0)的一个焦点F作一条渐近线的平行线,该平行线与y轴交于点P,若|OP|=|OF|,则双曲线的离心率为(  )

查看答案和解析>>

同步练习册答案