精英家教网 > 高中数学 > 题目详情
已知P是正方形ABCD所在平面外一点,PB⊥平面ABCD,PB=BC,则PC与BD所成的角为
60°
60°
分析:直接由题意建立空间直接坐标系,设出PB=BC=1,求出PC与BD对应向量的坐标,利用两向量夹角的余弦值求夹角,从而得到两条异面直线所成的角.
解答:解:如图,
由题意,以B为坐标原点,分别以BC、BA、BP所在直线为x、y、z轴建立空间直角坐标系.
设PB=BC=1,则B(0,0,0),D(1,1,0),C(1,0,0),P(0,0,1).
PC
=(1,0,-1),
BD
=(1,1,0)

cos<
PC
BD
>=
PC
BD
|
PC
||
BD
|
=
1
2
2
=
1
2

∴PC与BD所成的角为60°.
故答案为60°.
点评:本题考查了空间异面直线所成角的大小,考查了利用空间向量求异面直线所成的角,关键是注意异面直线所成角的范围,是中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,已知四棱锥P--ABC的底面ABCD为正方形,PA⊥平面ABCD,PA=AB=2,e为PC的中点,F为AD的中点.
(Ⅰ)证明EF∥平面PAB;
(Ⅱ)证明EF⊥平面PBC;
(III)点M是四边形ABCD内的一动点,PM与平面ABCD所成的角始终为45°,求动直线PM所形成的曲面与平面ABCD、平面PAB、平面PAD所围成几何体的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知四棱锥P-ABCD的底面ABCD是正方形,M,N分别为AD,PB的中点,且PD⊥底面ABCD,其中PD=AD=a.
(1)求证:MN⊥平面PBC;
(2)求MN与平面ABC所成的角;
(3)求四面体P-MBC的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)如图1,已知四棱锥P-ABCD,底面ABCD为菱形,PA⊥平面ABCD,∠ABC=60°,E是BC的中点.求证:AE⊥PD.
(2)如图2,正方形ADEF与梯形ABCD所在的平面互相垂直,AD⊥CD,AB∥CD,AB=AD=2,CD=4.求证:平面BDE⊥平面BEC.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆
y2
a2
+
x2
b2
=1(a>b>0)的上下焦点分别为F1,F1,短轴两个端点为P,P1,且四边形F1PF2P1是边长为2的正方形.
(1)求椭圆方程;
(2)设△ABC,AC=2
3
,B为椭圆
y2
a2
+
x2
b2
=1(a>b>0)在x轴上方的顶点,当AC在直线y=-1上运动时,求△ABC外接圆的圆心Q的轨迹E的方程;
(3)过点F(0,
3
2
)作互相垂直的直线l1l2,分别交轨迹E于M,N和R,Q.求四边形MRNQ的面积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在三棱柱ABC-A1B1C1中,侧面ABB1A,ACC1A1均为正方形,∠BAC=90°,AB=2,点D1是棱B1C1的中点.
(I)求证:A1D1⊥平面BB1C1C;
(II)已知线段A1B1上的一点P,满足直线AP与平面A1D1C所成角的正弦值为
30
15
,求
A1P
A1B1
的值.

查看答案和解析>>

同步练习册答案