【题目】已知函数, (为自然对数的底数).
(1)讨论函数的单调性;
(2)当时, 恒成立,求实数的取值范围.
【答案】(1)见解析(2)
【解析】试题分析:(1)求导后,分类讨论,利用导数的正负可得函数的单调性;
(2)当时, 恒成立转化为恒成立,构造函数求出右边函数的最大值即可.
试题解析:
解:(1)
①若, , 在上单调递增;
②若,当时, , 单调递减;
当时, , 单调递增
(2)当时, ,即
令,则
令,则
当时, , 单调递减;
当时, , 单调递增
又, ,所以,当时, ,即,
所以单调递减;当时, ,即,
所以单调递增,所以,所以
利用导数解决不等式恒成立问题的“两种”常用方法
(1)分离参数法:将原不等式分离参数,转化为不含参数的函数的最值问题,利用导数求该函数的最值,根据要求得所求范围.一般地,f(x)≥a恒成立,只需f(x)min≥a即可;f(x)≤a恒成立,只需f(x)max≤a即可.
(2)函数思想法:将不等式转化为某含待求参数的函数的最值问题,利用导数求该函数的极值(最值),然后构建不等式求解.
科目:高中数学 来源: 题型:
【题目】某公司生产电饭煲,每年需投入固定成本40万元,每生产1万件还需另投入16万元的变动成本,设该公司一年内共生产电饭煲万件并全部销售完,每一万件的销售收入为万元,且(),该公司在电饭煲的生产中所获年利润为(万元),(注:利润=销售收入-成本)
(1)写出年利润(万元)关于年产量(万件)的函数解析式,并求年利润的最大值;
(2)为了让年利润不低于2360万元,求年产量的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】第31届夏季奥林匹克运动会于2016年8月5日至8月21日在巴西里约热内卢举行.如表是近五届奥运会中国代表团和俄罗斯代表团获得的金牌数的统计数据(单位:枚).
第30届伦敦 | 第29届北京 | 第28届雅典 | 第27届悉尼 | 第26届亚特兰大 | |
中国 | 38 | 51 | 32 | 28 | 16 |
俄罗斯 | 24 | 23 | 27 | 32 | 26 |
(1)根据表格中两组数据在答题卡上完成近五届奥运会两国代表团获得的金牌数的茎叶图,并通过茎叶图比较两国代表团获得的金牌数的平均值及分散程度(不要求计算出具体数值,给出结论即可);
(2)如表是近五届奥运会中国代表团获得的金牌数之和(从第26届算起,不包括之前已获得的金牌数)随时间变化的数据:
时间(届) | 26 | 27 | 28 | 29 | 30 |
金牌数之和(枚) | 16 | 44 | 76 | 127 | 165 |
作出散点图如图:
由图可以看出,金牌数之和与时间之间存在线性相关关系,请求出关于的线性回归方程,并预测到第32届奥运会时中国代表团获得的金牌数之和为多少?
附:对于一组数据, ,…, ,其回归直线的斜率和截距的最小二乘估计分别为:
,
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,椭圆的离心率为,顶点为,且.
(1)求椭圆的方程;
(2)是椭圆上除顶点外的任意点,直线交轴于点,直线交于点.设的斜率为, 的斜率为,试问是否为定值?并说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某经销商从外地水产养殖厂购进一批小龙虾,并随机抽取40只进行统计,按重量分类统计结果如下图:
(1)记事件为:“从这批小龙虾中任取一只,重量不超过35的小龙虾”,求的估计值;
(2)若购进这批小龙虾100千克,试估计这批小龙虾的数量;
(3)为适应市场需求,了解这批小龙虾的口感,该经销商将这40只小龙虾分成三个等级,如下表:
等级 | 一等品 | 二等品 | 三等品 |
重量() |
按分层抽样抽取10只,再随机抽取3只品尝,记为抽到二等品的数量,求抽到二级品的期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】本市某玩具生产公司根据市场调查分析,决定调整产品生产方案,准备每天生产, , 三种玩具共100个,且种玩具至少生产20个,每天生产时间不超过10小时,已知生产这些玩具每个所需工时(分钟)和所获利润如表:
玩具名称 | |||
工时(分钟) | 5 | 7 | 4 |
利润(元) | 5 | 6 | 3 |
(Ⅰ)用每天生产种玩具个数与种玩具表示每天的利润(元);
(Ⅱ)怎样分配生产任务才能使每天的利润最大,最大利润是多少?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的上、下焦点分别为,上焦点到直线 4x+3y+12=0的距离为3,椭圆C的离心率e=.
(I)若P是椭圆C上任意一点,求的取值范围;
(II)设过椭圆C的上顶点A的直线与椭圆交于点B(B不在y轴上),垂直于的直线与交于点M,与轴交于点H,若,且,求直线的方程.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com