A. | $\sqrt{6}$ | B. | $\sqrt{2}$ | C. | $\sqrt{3}$ | D. | 2 |
分析 由题意和正弦定理求出sinC,由内角的范围和条件求出C,由内角和定理求出A,利用边角关系求出a.
解答 解:∵c=$\sqrt{2}$,b=$\sqrt{6}$,B=120°,
∴由正弦定理得,$\frac{b}{sinB}=\frac{c}{sinC}$,
则sinC=$\frac{c•sinB}{b}$=$\frac{\sqrt{2}×\frac{\sqrt{3}}{2}}{\sqrt{6}}$=$\frac{1}{2}$,
∵0°<C<120°,∴C=30°,
∴A=180°-B-C=30°,
即A=C,a=c=$\sqrt{2}$,
故选B.
点评 本题考查正弦定理,以及内角和定理,注意内角和的范围,属于基础题.
科目:高中数学 来源: 题型:选择题
A. | $(16+6\sqrt{2})c{{m}^{2}}^{\;}$ | B. | 22cm2 | C. | $(12+6\sqrt{2})c{m}^{2}$ | D. | $(18+2\sqrt{3})c{m}^{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $\frac{1}{5}$ | B. | $\frac{1}{2}$ | C. | $\frac{3}{5}$ | D. | $\frac{4}{5}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | {x|-1<x<1} | B. | {x|-2<x<2} | C. | {x|0<x<1} | D. | {x|1<x<2} |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $\frac{1}{2}$ | B. | $\frac{5}{4}$ | C. | $\frac{3}{2}$ | D. | $\frac{9}{4}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $\frac{3n}{10(10-3n)}$ | B. | $\frac{n}{10(10-3n)}$ | C. | $\frac{n}{10-3n}$ | D. | $\frac{n}{10(13-3n)}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com