精英家教网 > 高中数学 > 题目详情
6.设锐角α终边上一点P的坐标是(3cosθ,sinθ),则函数y=θ-α(0<θ<$\frac{π}{2}$)的最大值是(  )
A.$\frac{π}{6}$B.$\frac{π}{4}$C.$\frac{π}{3}$D.$\frac{π}{2}$

分析 依题意可求tanα=$\frac{1}{3}$tanθ,利用两角和的正切函数公式,基本不等式可得tany=tan(θ-α)=$\frac{tanθ-tanα}{1+tanθtanα}$=$\frac{2}{\frac{3}{tanθ}+tanθ}$≤$\frac{\sqrt{3}}{3}$,利用正切函数的图象和性质即可解得函数y=θ-α(0<θ<$\frac{π}{2}$)的最大值.

解答 解:∵锐角α终边上一点P的坐标是(3cosθ,sinθ),y=θ-α(0<θ<$\frac{π}{2}$),
依题意tanα=$\frac{sinθ}{3cosθ}$=$\frac{1}{3}$tanθ,
∴tany=tan(θ-α)=$\frac{tanθ-tanα}{1+tanθtanα}$=$\frac{2tanθ}{3+ta{n}^{2}θ}$=$\frac{2}{\frac{3}{tanθ}+tanθ}$≤$\frac{2}{2\sqrt{3}}$=$\frac{\sqrt{3}}{3}$.
∵0<θ<$\frac{π}{2}$,
∴可得:θ∈(0,$\frac{π}{6}$],即函数y=θ-α(0<θ<$\frac{π}{2}$)的最大值是$\frac{π}{6}$.
故选:A.

点评 本题主要考查了任意角的三角函数的定义,两角和的正切函数公式,基本不等式,正切函数的图象和性质的综合应用,考查了数形结合思想和转化思想,考查了计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

16.已知x,y满足不等式组$\left\{\begin{array}{l}x-4y≤-3\\ 3x+5y≤25\\ x≥1\end{array}\right.$,则函数z=2x+y取得最大值与最小值之和是(  )
A.3B.9C.12D.15

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知tanα=$\frac{1}{3}$,tanβ=-$\frac{1}{7}$,且0<α<$\frac{π}{2}$,$\frac{π}{2}$<β<π,则2α-β的值为(  )
A.-$\frac{π}{6}$B.-$\frac{π}{3}$C.-$\frac{π}{4}$D.-$\frac{3}{4}$π

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知实数x,y满足$\left\{\begin{array}{l}{x+y-3≥0}\\{x-y+1≥0}\\{x≤2}\end{array}\right.$.
(1)若z=x-2y,求z的最大值和最小值;
(2)若z=x2+y2,求z的最大值和最小值;
(3)若z=$\frac{y}{x}$,求z的最大值和最小值;
(4)z=ax+y(a<0)取得最大值的最优解有无穷多个,求a的值;
(5)z=ax+y取得的最大值为5,最小值为3,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.动点P向圆x2+y2=1引两条切线PA、PB,切点分别为A、B,∠APB=60°,则动点P的轨迹方程为x2+y2=4.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.函数f(x)=$\frac{\sqrt{1-|x-1|}}{x-1}$的定义域为[0,1)∪(1,2].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知sinα=$\frac{2}{3}$,则sin($α-\frac{π}{2}$)=(  )
A.$\frac{2}{3}$B.$\frac{\sqrt{5}}{3}$C.-$\frac{\sqrt{5}}{3}$D.±$\frac{\sqrt{5}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知集合A={x|2x2-7x+3≤0},集合B={x|x2-a<0,a∈R}.
(1)若a=4,求A∩B和A∪B.
(2)若A∩B=∅,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知实数x,y满足$\left\{\begin{array}{l}x-y≥0\\ x+y-5≤0\\ y≥\frac{1}{4}{x^2}+\frac{1}{4}\end{array}\right.$,则 $\frac{{{{(x+y)}^2}+{y^2}}}{{{x^2}+2{y^2}}}$的取值范围为[$\frac{13}{9}$,$\frac{5}{3}$].

查看答案和解析>>

同步练习册答案