【题目】已知函数
(Ⅰ)如果曲线在点处的切线的斜率是,求的值;
(Ⅱ)当,时,求证:;
(Ⅲ)若存在单调递增区间,请直接写出的取值范围.
【答案】(Ⅰ);(Ⅱ)见解析;(Ⅲ)
【解析】
(Ⅰ)由即可解出;(Ⅱ)对进行二次求导,通过二次求导所得导函数恒正,得到单调递增;根据零点存在定理可知在上,存在零点;根据导函数符号得到单调性,从而确定最大值为,则结论可证;(III)将问题转化为存在,使得,通过分离变量将问题转化为与最值的比较;在时求的最小值;时求的最大值,由于最值点无法取得,结合洛必达法则求得极限值;从而可得的取值范围.
(Ⅰ)由题意知:
则,即
(Ⅱ)当时, img src="http://thumb.zyjl.cn/questionBank/Upload/2019/08/15/08/7528bcf4/SYS201908150803096317375479_DA/SYS201908150803096317375479_DA.019.png" width="125" height="23" style="-aw-left-pos:0pt; -aw-rel-hpos:column; -aw-rel-vpos:paragraph; -aw-top-pos:0pt; -aw-wrap-type:inline" />
令
因此恒成立
当时,单调递增
又,
存在唯一的,使得
列表如下:
极小值 |
当时,
当,时,
(Ⅲ)由题意可知,存在,使得
当时,,不合题意;
当时,
令,则
当时,,则单调递减;时,,则单调递增
可得时,函数取得极小值即最小值
当时,
当时,,则单调递减.
又时,
.
综上可得:
科目:高中数学 来源: 题型:
【题目】已知点P(x,y)在△ABC的边界和内部运动,其中A(1,0),B(2,1),C(4,4).若z=2x-y的最小值为M,最大值为N.
(1)求M,N;
(2)若m+n=M,m>0,n>0,求的最小值,并求此时的m,n的值;
(3)若m+n+mn=N,m>0,n>0,求mn的最大值和m+n的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】己知圆的圆心在直线上,且过点,与直线相切.
()求圆的方程.
()设直线与圆相交于,两点.求实数的取值范围.
()在()的条件下,是否存在实数,使得弦的垂直平分线过点,若存在,求出实数的值;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知△ABC的内角A,B,C的对边分别为a,b,c.且满足4cos2cos2(B+C).
(1)求角A;
(2)若△ABC的面积为,周长为8,求a.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4-4:坐标系与参数方程
在平面直角坐标系中,圆的参数方程为(为参数).以原点为极点, 轴的正半轴为极轴,取相同的长度单位建立极坐标系,直线的极坐标方程是.
(1)求直线的直角坐标方程与圆的普通方程;
(2)点为直线上的一动点,过点作直线与圆相切于点,求四边形的面积的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】我国华南沿海地区是台风登陆频繁的地区,为统计地形地貌对台风的不同影响,把华南沿海分成东西两区,对台风的强度按风速划分为:风速不小于30米/秒的称为强台风,风速小于30米/秒的称为风暴,下表是2014年对登陆华南地区的15次台风在东西两部的强度统计:
(1)根据上表,计算有没有99%以上的把握认为台风强度与东西地域有关;
(2)2017年8月23日,“天鸽”在深圳登陆,造成深圳特大风暴,如图所示的茎叶图统计了深圳15块区域的风速.(十位数为茎,个位数为叶)
①任取2个区域进行统计,求取到2个区域风速不都小于25的概率;
②任取3个区域进行统计, 表示“风速达到强台风级别的区域个数”,求的分布列及数学期望.
附: ,其中.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某医院为促进行风建设,拟对医院的服务质量进行量化考核,每个患者就医后可以对医院进行打分,最高分为100分.上个月该医院对100名患者进行了回访调查,将他们按所打分数分成以下几组:第一组,第二组,第三组,第四组,第五组,得到频率分布直方图,如图所示.
(1)求所打分数不低于60分的患者人数;
(2)该医院在第二三组患者中按分层抽样的方法抽取6名患者进行深入调查,之后将从这6人中随机抽取2人聘为医院行风监督员,求行风监督员来自不同组的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】四棱锥的底面ABCD是边长为a的菱形,面ABCD,,E,F分别是CD,PC的中点.
(1)求证:平面平面PAB;
(2)M是PB上的动点,EM与平面PAB所成的最大角为,求二面角的余弦值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com