精英家教网 > 高中数学 > 题目详情

【题目】某地草场出现火灾,火势正以每分钟的速度顺风蔓延,消防站接到警报立即派消防队员前去,在火灾发生后分钟到达救火现场,已知消防队员在现场平均每人每分钟灭火,所消耗的灭火材料、劳务津贴等费用为每人每分钟元,另附加每次救火所耗损的车辆、器械和装备等费用平均每人100元,而烧毁一平方米森林损失费为30元.

1)设派名消防队员前去救火,用分钟将火扑灭,试建立的函数关系式;

2)问应该派多少消防队员前去救火,才能使总损失最少?(注:总损失费=灭火劳务津贴+车辆、器械装备费+森林损失费)

【答案】(1)tx2xN×);(2)派16名消防员

【解析】

1)根据题意建立方程,化简得到答案.

2)设总损失费为,则,求导得到函数的单调区间得到最小值.

1)由题意可知:60t+5)=30xt,即t.由30x60可得x2

t关于x的函数为tx2xN×).

2)设总损失费为fx),则

时等号成立.

故派16名消防员前去救火,总损失费用最少.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图在四棱锥中,底面是边长为的正方形,的中点,是线段上异于端点的一点,平面 平面.

(Ⅰ)证明:

(Ⅱ)与平面所成的角的正弦值为,求四棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】巳知集合P={},Q={},将PQ的所有元素从小到大依次排列构成一个数列{},记为数列{}的前n项和,则使得<1000成立的的最大值为

A. 9 B. 32 C. 35 D. 61

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】将直角三角形沿斜边上的高折成的二面角,已知直角边,那么下面说法正确的是( )

A. 平面平面 B. 四面体的体积是

C. 二面角的正切值是 D. 与平面所成角的正弦值是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的离心率为,焦距为,直线过椭圆的左焦点.

1)求椭圆的标准方程;

2)若直线轴交于点是椭圆上的两个动点,的平分线在轴上,.试判断直线是否过定点,若过定点,求出定点坐标;若不过定点,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列有关命题的说法正确的是___(请填写所有正确的命题序号).

①命题“若,则”的否命题为:“若,则”;

②命题“若,则”的逆否命题为真命题;

③条件,条件,则的充分不必要条件;

④已知时,,若是锐角三角形,则.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某学校研究性学习小组对该校高三学生视力情况进行调查,在高三的全体1000名学生中随机抽取了100名学生的体检表,并得到如图的频率分布直方图.

(1)若直方图中后四组的频数成等差数列,试估计全年级视力在5.0以下的人数;

(2)学习小组成员发现,学习成绩突出的学生,近视的比较多,为了研究学生的视力与学习成绩是否有关系,对年级名次在1~50名和951~1000名的学生进行了调查,得到右表中数据,根据表中的数据,能否在犯错的概率不超过0.05的前提下认为视力与学习成绩有关系?

附:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设全集U=R,集合A={x|1≤x<4},B={x|2a≤x<3-a}.

(1)若a=-2,求B∩A,B∩(UA);(2)A∪B=A,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知为双曲线的左、右焦点,过作垂直于轴的直线,并在轴上方交双曲线于点,且.

1)求双曲线的方程;

2)过圆上任意一点作切线交双曲线两个不同点,中点为,若,求实数的值.

查看答案和解析>>

同步练习册答案