精英家教网 > 高中数学 > 题目详情

【题目】已知函数 ,则其导函数f′(x)的图象大致是(
A.
B.
C.
D.

【答案】C
【解析】解:∵f(x)= x2sinx+xcosx, ∴f′(x)= x2cosx+cosx,
∴f′(﹣x)= (﹣x)2cos(﹣x)+cos(﹣x)= x2cosx+cosx=f′(x),
∴其导函数f′(x)为偶函数,图象关于y轴对称,故排除A,B,
当x→+∞时,f′(x)→+∞,故排除D,
故选:C.
【考点精析】本题主要考查了利用导数研究函数的单调性的相关知识点,需要掌握一般的,函数的单调性与其导数的正负有如下关系: 在某个区间内,(1)如果,那么函数在这个区间单调递增;(2)如果,那么函数在这个区间单调递减才能正确解答此题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知圆C:x2+y2+Dx+Ey+3=0,圆心在直线x+y﹣1=0上,且圆心在第二象限,半径长为 ,求圆的一般方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知△ABC的三个内角A,B,C所对应的边分别为a,b,c,且满足asinB= bcosA.
(1)求A的大小;
(2)若a=7,b=5,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知△ABC中,内角A,B,C依次成等差数列,其对边分别为a,b,c,且b= asinB.
(1)求内角C;
(2)若b=2,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若圆C:(x﹣5)2+(y+1)2=m(m>0)上有且只有一点到直线4x+3y﹣2=0的距离为1,则实数m的值为( )
A.4
B.16
C.4或16
D.2或4

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若三棱锥P﹣ABC中,AB=AC=1,AB⊥AC,PA⊥平面ABC,且直线PA与平面PBC所成角的正切值为 ,则三棱锥P﹣ABC的外接球的表面积为( )
A.4π
B.8π
C.16π
D.32π

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在多面体ABCDE中,DB⊥平面ABC,AE∥DB,且△ABC是边长为2的等边三角形,AE=1,CD与平面ABDE所成角的正弦值为

(1)若F是线段CD的中点,证明:EF⊥面DBC;
(2)求二面角D﹣EC﹣B的平面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在正方体上任意选择4个顶点,它们可能是如下各种几何形体的4个顶点,这些几何形体是(写出所有正确结论的编号).
①矩形;
②不是矩形的平行四边形;
③有三个面为等腰直角三角形,有一个面为等边三角形的四面体;
④每个面都是等边三角形的四面体;
⑤每个面都是直角三角形的四面体.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=cos2x+2 sinxcosx﹣sin2x.
(1)求函数f(x)的最小正周期
(2)求函数f(x)单调增区间.

查看答案和解析>>

同步练习册答案