精英家教网 > 高中数学 > 题目详情

【题目】太极图是以黑白两个鱼形纹组成的圆形图案,俗称阴阳鱼,它形象化的表达了阴阳轮转,相反相成是万物生成变化根源的哲理,展现了一种相互转化,相对统一的形式美.如图,按照太极图的构图方法,在平面直角坐标系中,圆被函数的图象分割为两个对称的鱼形图案,其中两个小圆的周长均为,现在大圆内随机取一点,则此点取自阴影部分的概率为(

A.B.C.D.

【答案】C

【解析】

先由小圆的周长,求出小圆半径,得出阴影部分面积;再由三角函数的周期求出大圆的直径,得出大圆面积,面积比即为所求概率.

设小圆半径为,大圆半径为

因为两个小圆的周长均为,所以,解得

因此,阴影部分的面积为

又函数的周期为,根据题中图像可得,

所以,大圆的面积为:

因此,在大圆内随机取一点,则此点取自阴影部分的概率为.

故选:C.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知的三边长分别为abc,其面积为S,则的内切圆O的半径.这是一道平面几何题,其证明方法采用“等面积法”设空间四面体四个面的面积分别为积为V,内切球半径为R.请用类比推理方法猜测对空间四面体存在类似结论为______.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某海滨浴场一天的海浪高度是时间的函数,记作,下表是某天各时的浪高数据:

0

3

6

9

12

15

18

21

24

1.5

1.0

0.5

1.0

1.5

1.0

0.5

0.99

1.5

1)选用一个三角函数来近似描述这个海滨浴场的海浪高度与时间的函数关系;

2)依据规定,当海浪高度不少于时才对冲浪爱好者开放海滨浴场,请依据(1)的结论,判断一天内的之间,有多少时间可供冲浪爱好者进行冲浪?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在等比数列中,

1)已知,求

2)已知,求

3)已知,求

4)已知,求.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥中,侧面为等边三角形且垂直于底面

.

(1)证明:

(2)若直线与平面所成角为,求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(Ⅰ)当 取得极值的值

(Ⅱ)当函数有两个极值点总有 成立的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在极坐标系中,曲线,曲线 .以极点为坐标原点,极轴为轴正半轴建立直角坐标系,曲线的参数方程为为参数).

(1)求的直角坐标方程;

(2)交于不同四点,这四点在上的排列顺次为,求的值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,则函数的图象为( )

A. B.

C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设有三个乡镇,分别位于一个矩形的两个顶点MN的中点S处,,现要在该矩形的区域内(含边界),且与MN等距离的一点O处设一个宣讲站,记O点到三个乡镇的距离之和为

1)设,试将L表示为x的函数并写出其定义域;

2)试利用(1)的函数关系式确定宣讲站O的位置,使宣讲站O到三个乡镇的距离之和最小.

查看答案和解析>>

同步练习册答案