精英家教网 > 高中数学 > 题目详情
4.函数$f(x)=sinx-cos(x-\frac{π}{6})$的值域为(  )
A.$[-\frac{{\sqrt{3}}}{2},\frac{{\sqrt{3}}}{2}]$B.$[-\sqrt{3},\sqrt{3}]$C.[-2,2]D.[-1,1]

分析 通过两角差的余弦函数化简函数的表达式,利用两角差的正弦函数化为一个角的一个三角函数的形式,求出函数的值域.

解答 解:∵f(x)=sinx-cos(x-$\frac{π}{6}$)
=sinx-$\frac{\sqrt{3}}{2}$cosx-$\frac{1}{2}$sinx
=$\frac{1}{2}$sinx-$\frac{\sqrt{3}}{2}$cosx
=sin(x-$\frac{π}{3}$).
∴函数f(x)=sinx-cos(x-$\frac{π}{6}$)的值域为[-1,1].
故选:D.

点评 本题考查三角函数中的恒等变换应用,正弦函数的定义域和值域,考查计算能力,利用两角差的正弦函数化为一个角的一个三角函数的形式是关键,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

14.某购物中心为了了解顾客使用新推出的某购物卡的顾客的年龄分布情况,随机调查了100位到购物中心购物的顾客年龄,并整理后画出频率分布直方图如图所示,年龄落在区间[55,65),[65,75),[75,85]内的频率之比为4:2:1.
(1)求顾客年龄值落在区间[75,85]内的频率;
(2)拟利用分层抽样从年龄在[55,65),[65,75)的顾客中选取6人召开一个座谈会,现从这6人中选出2人,求这两人在不同年龄组的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.若一次函数f(x)=ax+b有一个零点1,则函数g(x)=bx2-ax的零点是0,-1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知实数x,y满足x2+y2=4(y≥0),则m=$\sqrt{3}$x+y的取值范围是(  )
A.(-2$\sqrt{3}$,4)B.[-2$\sqrt{3}$,4]C.[-4,4]D.[-4,2$\sqrt{3}$]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知α∈($\frac{π}{2}$,π),且cosα=-$\frac{24}{25}$,则$\frac{tan(α+\frac{15}{2}π)}{cos(α+7π)}$=(  )
A.$\frac{7}{25}$B.-$\frac{7}{25}$C.$\frac{25}{7}$D.-$\frac{25}{7}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知x,y满足约束条件$\left\{\begin{array}{l}x+y≤5\\ x-4y≤0\\ x-y+3≥0\end{array}\right.$,则下列目标函数中,在点(4,1)处取得最大值的是(  )
A.$z=\frac{1}{5}x-y$B.z=3x+yC.$z=-\frac{1}{5}x-y$D.z=3x-y

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.将下列函数配方:
(1)f(x)=x2-2x+3
(2)f(x)=3x2+6x-1
( 3 )f(x)=-2x2+3x-2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知实数x,y满足$\left\{\begin{array}{l}{x+y-4≤0}\\{y-1≥0}\\{x-1≥0}\end{array}\right.$,则z=$\frac{y-1}{x}$的最大值是2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.对任意x∈R*,不等式lnx≤ax恒成立,则实数a的取值范围是(  )
A.(0,$\frac{1}{e}$)B.[$\frac{1}{e}$,+∞)C.(-∞,$\frac{1}{e}$]D.[e,+∞)

查看答案和解析>>

同步练习册答案