精英家教网 > 高中数学 > 题目详情
14.如图,在四棱锥P-ABCD中,底面ABCD是矩形,PA⊥平面ABCD,PA=AD=2,AB=1,BM⊥PD于点M.
(1)求证:AM⊥PD;
(2)求直线BM与平面ABCD所成的角的正弦值.

分析 (1)先证明AB垂直于PD,再根据BM垂直于PD,可得PD垂直于平面ABM,从而证得PD垂直于AM.
(2)由题意可得M是PD的中点,作MN⊥AD,N为垂足,可得∠MBN为直线BM与平面ABCD所成的角,解直角三角形BMN,求得sin∠MBN=$\frac{MN}{BM}$ 的值.

解答 (1)证明:∵PA⊥平面ABCD,AB?平面ABCD,∴PA⊥AB.
∵AB⊥AD,AD∩PA=A AD?平面PAD,PA?平面PAD,
∴AB⊥平面PAD.∵PD?平面PAD,∴AB⊥PD.
∵BM⊥PD,AB∩BM=B,AB?平面ABM,
BM?平面ABM,∴PD⊥平面ABM.
∵AM?平面ABM,∴AM⊥PD.
(2)解:由(1)知,AM⊥PD,又PA=AD,
则M是PD的中点,作MN⊥AD,N为垂足,则N为AD的中点,
MN∥PA,MN=$\frac{1}{2}$PA=1,AD⊥平面ABCD,
∠MBN为直线BM与平面ABCD所成的角.
Rt△MMB中,MN=1 BN=$\sqrt{{BA}^{2}{+AN}^{2}}$=$\sqrt{1+1}$=$\sqrt{2}$,∴BM=$\sqrt{{MN}^{2}{+BN}^{2}}$=$\sqrt{3}$,
∴sin∠MBN=$\frac{MN}{BM}$=$\frac{1}{\sqrt{3}}$=$\frac{\sqrt{3}}{3}$.

点评 本题主要考查直线和平面垂直的判定和性质,直线和平面所成的角的定义和求法,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

9.f(x)=ax2+bx+1在[3-a,5]上是偶函数,则f(x)在[3-a,5]的最小值为1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知f(x)是定义在R上的奇函数,f(x+1)是偶函数,当x∈(2,4)时,f(x)=|x-3|,则f(1)+f(2)+f(3)+f(4)=(  )
A.1B.0C.2D.-2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.如图所示,已知$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>>0)点A(1,$\sqrt{2}$)是离心率为$\frac{\sqrt{2}}{2}$的椭圆C:上的一点,斜率为$\sqrt{2}$的直线BD交椭圆C于B、D两点,且A、B、D三点不重合.
(Ⅰ)求椭圆C的方程;
(Ⅱ)求△ABD面积的最大值;
(Ⅲ)设直线AB、AD的斜率分别为k1,k2,试问:是否存在实数λ,使得k1+λk2=0成立?若存在,求出λ的值;否则说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知向量$\overrightarrow a=(2,2,0)$,$\overrightarrow b=(-2,0,2)$,若存在单位向量$\overrightarrow n$,使$\overrightarrow n⊥\overrightarrow a$,$\overrightarrow n⊥\overrightarrow b$,则$\overrightarrow n$=$(\frac{{\sqrt{3}}}{3},-\frac{{\sqrt{3}}}{3},\frac{{\sqrt{3}}}{3})$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.设集合A={1,2,3,5,7},B={x∈N|2<x≤6},全集U=AU B,则A∩(∁uB)=(  )
A.{1,2,7}B.{1,7}C.{2,3,7}D.{2,7}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.将直径为2的半圆绕直径所在的直线旋转半周而形成的曲面所围成的几何体的表面积为(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.给出下列四个命题:
(1)方程x2+y2-2x-1=0表示的是圆;
(2)动点到两个定点的距离之和为一定长,则动点的轨迹为椭圆;
(3)抛物线x=2y2的焦点坐标是$({\frac{1}{8},0})$;
(4)若双曲线$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{k}$=1的离心率为e,且1<a<2,则k的取值范围是k∈(-12,0)
其中正确命题的序号是(1)(3)(4).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知奇函数f(x)在定义域[-2,2]上单调递减,求满足f(1-m)+f(1-m2)<0的实数m的取值范围.

查看答案和解析>>

同步练习册答案