精英家教网 > 高中数学 > 题目详情
18.若函数f(x)=lg(ax2-x+a)的值域是R,则实数a的取值范围是[0,$\frac{1}{2}$].

分析 根据对数函数的值域便知函数ax2-x+a的值域为(0,+∞),可看出要讨论a:a=0时,显然-x的值域可以为(0,+∞),而a≠0时,ax2-x+a为二次函数,从而有$\left\{\begin{array}{l}{a>0}\\{△≥0}\end{array}\right.$,从而这两种情况下所得a的范围求并集便可得出实数a的取值范围.

解答 解:f(x)的值域为R;
∴ax2-x+a的值域为(0,+∞);
①若a=0,-x的值域可以为(0,+∞);
②若a≠0,则$\left\{\begin{array}{l}{a>0}\\{△=1-4{a}^{2}≥0}\end{array}\right.$;
解得$0<a≤\frac{1}{2}$;
∴实数a的取值范围为$[0,\frac{1}{2}]$.
故答案为:$[0,\frac{1}{2}]$.

点评 考查函数值域的概念,对数函数的值域和定义域,要熟悉一次函数、二次函数的图象,以及二次函数的取值和判别式△的关系,不要漏了a=0的情况.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

8.已知A={x|a≤x≤a+3},B={x|x<-1或x>5},若A∪B=B,则实数a的取值范围是(-∞,-4)∪(5,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知a、b、c分别为△ABC三个内角A、B、C的对边,且bsinA=$\sqrt{3}$acosB.
(1)求B;
(2)若b=3,sinC=2sinA,求a,c.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知λ∈R,函数$f(x)=\left\{{\begin{array}{l}{|{x+1}|,x<0}\\{lgx,x>0}\end{array}}\right.$g(x)=x2-4x+1+4λ,若关于x的方程f(g(x))=λ有6个解,则λ的取值范围为(  )
A.$(0,\frac{2}{3})$B.$(\frac{1}{2},\frac{2}{3})$C.$(\frac{2}{5},\frac{1}{2})$D.$(0,\frac{2}{5})$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知x+x-1=3,则代数式$\frac{{x}^{\frac{1}{2}}+{x}^{-\frac{1}{2}}}{{x}^{2}+{x}^{-2}}$的值是$\frac{\sqrt{5}}{7}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.下列双曲线中,渐近线方程为y=±2x的是(  )
A.${x}^{2}-\frac{{y}^{2}}{4}=1$B.$\frac{{x}^{2}}{4}$-y2=1C.x2-$\frac{{y}^{2}}{2}$=1D.$\frac{{x}^{2}}{2}$-y2=1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.设函数f(x)=cos(2x-$\frac{π}{2}$)+2cos2x,x∈R;
(1)求函数f(x)的最小正周期和单调减区间;
(2)将函数f(x)的图象向右平移$\frac{π}{4}$个单位长度后得到函数g(x)的图象,求函数g(x)在区间[0,$\frac{π}{2}$]上的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.多项式(x-1)(x-2)(x-3)(x-4)(x-5)的展开式中,x4项的系数=-15,x项的系数=274.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知函数f(x)=x2+2ax+2,x∈[-5,5]
(Ⅰ)若y=f(x)在[-5,5]上是单调函数,求实数a取值范围.
(Ⅱ)求y=f(x)在区间[-5,5]上的最小值.

查看答案和解析>>

同步练习册答案