精英家教网 > 高中数学 > 题目详情

在数列{an}中,a1=1,a2=2,且an+2-an=1+(-1)n(n∈N*),则S100=________.

2600
分析:奇数项:a2k+1=1+(-1)2k-1+a2k-1=a2k-1,偶数项:a2k+2=1+(-1)2k+a2k=2+a2k,所以奇数项相等,偶数项为等差数列,公差为2,由此能求出S奇数项:a2k+1=1+(-1)2k-1+a2k-1=a2k-1,故能求出S100
解答:奇数项:a2k+1=1+(-1)2k-1+a2k-1=a2k-1
偶数项:a2k+2=1+(-1)2k+a2k=2+a2k
所以奇数项相等,偶数项为等差数列,公差为2
a100=a2+49×2=100
S100=50×a1+50×(a1+a100)×
=50+50(2+100)=2600.
故答案为:2600.
点评:本题考查数列的递推式,解题时要注意分类思想的合理运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在数列{an}中,
a
 
1
=1
an=
1
2
an-1+1
(n≥2),则数列{an}的通项公式为an=
2-21-n
2-21-n

查看答案和解析>>

科目:高中数学 来源: 题型:

在数列{an}中,a 1=
1
3
,并且对任意n∈N*,n≥2都有an•an-1=an-1-an成立,令bn=
1
an
(n∈N*).
(Ⅰ)求数列{bn}的通项公式;
(Ⅱ)设数列{
an
n
}的前n项和为Tn,证明:
1
3
Tn
3
4

查看答案和解析>>

科目:高中数学 来源: 题型:

在数列{an}中,a=
12
,前n项和Sn=n2an,求an+1

查看答案和解析>>

科目:高中数学 来源: 题型:

在数列{an}中,a1=a,前n项和Sn构成公比为q的等比数列,________________.

(先在横线上填上一个结论,然后再解答)

查看答案和解析>>

科目:高中数学 来源:2012-2013学年广东省汕尾市陆丰市碣石中学高三(上)第四次月考数学试卷(理科)(解析版) 题型:解答题

在数列{an}中,a,并且对任意n∈N*,n≥2都有an•an-1=an-1-an成立,令bn=(n∈N*).
(Ⅰ)求数列{bn}的通项公式;
(Ⅱ)设数列{}的前n项和为Tn,证明:

查看答案和解析>>

同步练习册答案