精英家教网 > 高中数学 > 题目详情

【题目】在三棱锥 都是边长为的等边三角形, 分别是的中点.

(1)求证: 平面

(2)连接,求证: 平面

(3)求三棱锥的体积.

【答案】(1)见解析2见解析3.

【解析】试题分析:(1)由三角形中位线定理,得出ODPA,结合线面平行的判定定理,可得OD平面PAC;

(2)等腰PAB和等腰CAB中,证出PO=OC=1,而PC=,由勾股定理的逆定理,得POOC,结合POAB,可得PO平面ABC;

(3)由(2)易知PO是三棱锥P﹣ABC的高,算出等腰ABC的面积,再结合锥体体积公式,可得三棱锥的体积.

试题解析:

(1)分别为的中点.

.

平面. 平面.

平面.

2)连接.

.

的中点,

同理,

,而.

. 平面 平面.

平面.

3)由(II)可知平面.

为三棱锥的高, .

三棱锥的体积为:

.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知椭圆的上顶点为,直线与该椭圆交于两点,且点恰为的垂心,则直线的方程为______ .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】经过函数性质的学习,我们知道:函数的图象关于轴成轴对称图形的充要条件是为偶函数”.

1)若为偶函数,且当时,,求的解析式,并求不等式的解集;

2)某数学学习小组针对上述结论进行探究,得到一个真命题:函数的图象关于直线成轴对称图形的充要条件是为偶函数”.若函数的图象关于直线对称,且当时,.

i)求的解析式;

ii)求不等式的解集.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】右图是一个几何体的平面展开图,其中ABCD

正方形, EF分别为PAPD的中点,在此几何体中,

给出下面四个结论:

直线BE与直线CF异面;直线BE与直线AF异面;

直线EF//平面PBC平面BCE平面PAD.

其中正确结论的个数是

A. 1B. 2C. 3D. 4

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】随着雾霾的日益严重,中国部分省份已经实施了“煤改气”的计划来改善空气质量指数.2017年支撑我国天然气市场消费增长的主要资源是国产常规气和进口天然气,资源每年的增量不足以支撑天然气市场连续亿立方米的年增量.进口LNG和进口管道气受到接收站、管道能力和进口气价资源的制约.未来,国产常规气产能释放的红利将会逐步减弱,产量增量将维持在亿方以内.为了测定某市是否符合实施煤改气计划的标准,某监测站点于2016年8月某日起连续天监测空气质量指数(AQI),数据统计如下:

1)根据上图完成下列表格

空气质量指数(

天数

2)计算这天中,该市空气质量指数的平均数;

3)若按照分层抽样的方法,从空气质量指数在以及的等级中抽取天进行调研,再从这天中任取天进行空气颗粒物分析,求恰有天空气质量指数在上的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】从2名男生和2名女生中任意选择两人在星期六、星期日参加某公益活动,每天一人,则星期六安排一名男生、星期日安排一名女生的概率为(  )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,在四棱锥 都是等边三角形平面平面 .

(Ⅰ)求证:平面平面

上一点平面时,三棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数f(x)的定义域为D={x|x≠0},且满足对于任意x1x2D,有f(x1·x2)=f(x1)+f(x2).

(1)求f(1)的值;

(2)判断f(x)的奇偶性并证明你的结论;

(3)如果f(4)=1,f(x-1)<2,且f(x)在(0,+∞)上是增函数,求x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,圆,点为抛物线上任意一点(异于原点),过点作圆的切线为切点,则的最小值是___

查看答案和解析>>

同步练习册答案