精英家教网 > 高中数学 > 题目详情

【题目】如图,二面角中,,射线分别在平面内,点A在平面内的射影恰好是点B,设二面角与平面所成角、与平面所成角的大小分别为,则( )

A.B.C.D.

【答案】A

【解析】

由题意画出图形,分别找出二面角及线面角,结合正切函数的单调性及平面的斜线与平面内所有直线所成角中的最小角是线面角进行大小比较.

解:当PAlPBl时,δ=φθ

PAPBl均不垂直时,如图:

由已知ABβ,可得ABl,过AAOl,连接OB,则OBl

可得∠AOB为δ,∠APBφ

在平面AOB内,过BBIAO,则BIα,连接PI,则∠BPIθ

RtABORtABP中,可得tanδtanφ,由ABABPBOB

可得tanδ>tanφ,则δ>φ

PB为平面α的一条斜线,PBα内所有直线所成角的最小角为θ,即φθ

∴δ>φθ

综上,δ≥φθ

故选:A

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】为了了解学生参加体育活动的情况,学校对学生进行随机抽样调查,其中一个问题是“你平均每天参加体育活动的时间是多少?”,共有4个选项:A,1.5小时以上,B,1-1.5小时,C,0.5-1小时,D,0.5小时以下.图(1),(2)是根据调查结果绘制的两幅不完整的统计图,请你根据统计图提供的信息,解答以下问题:

(1)本次一共调查了多少名学生.

(2)在图(1)中将对应的部分补充完整.

(3)若该校有3000名学生,你估计全校有多少名学生平均每天参加体育活动的时间在0.5小时以下?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】随着智能手机的普及,使用手机上网成为了人们日常生活的一部分,很多消费者对手机流量的需求越来越大.长沙某通信公司为了更好地满足消费者对流量的需求,准备推出一款流量包.该通信公司选了5个城市(总人数、经济发展情况、消费能力等方面比较接近)采用不同的定价方案作为试点,经过一个月的统计,发现该流量包的定价:(单位:元/月)和购买人数(单位:万人)的关系如表:

(1)根据表中的数据,运用相关系数进行分析说明,是否可以用线性回归模型拟合的关系?并指出是正相关还是负相关;

(2)①求出关于的回归方程;

②若该通信公司在一个类似于试点的城市中将这款流量包的价格定位25元/ 月,请用所求回归方程预测长沙市一个月内购买该流量包的人数能否超过20 万人.

参考数据:.

参考公式:相关系数,回归直线方程

其中.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱柱中,底面是边长为4的等边三角形,的中点.

1)证明:平面.

2)若是等边三角形,求二面角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知某山区小学有名四年级学生,将全体四年级学生随机按编号,并且按编号顺序平均分成组.现要从中抽取名学生,各组内抽取的编号按依次增加进行系统抽样.

1)若抽出的一个号码为,据此写出所有被抽出学生的号码;

2)分别统计这名学生的数学成绩,获得成绩数据的茎叶图如图所示,求该样本的方差.

(注:,方差

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某中学为研究学生的身体素质与体育锻炼时间的关系,对该校300名高三学生平均每天体育锻炼时间进行调查,如表:(平均每天锻炼的时间单位:分钟).

平均每天锻炼的时间/分钟

总人数

34

51

59

66

65

25

将学生日均体育锻炼时间在的学生评价为锻炼达标”.

1)请根据上述表格中的统计数据填写下面的列联表;

锻炼不达标

锻炼达标

合计

40

160

合计

2)通过计算判断,是否能在犯错误的概率不超过0.05的前提下认为锻炼达标与性别有关?

参考公式:,其中.

临界值表

0.10

0.05

0.025

0.010

2.706

3.841

5.024

6.635

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】等比数列{an}的各项均为正数,且2a1+3a2=1, =9a2a6.

(1)求数列{an}的通项公式;

(2)设bn=log3a1+log3a2+…+log3an,求数列的前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校高一某班的一次数学测试成绩的茎叶图和频率分布直方图因事故都受到不同程度的损坏,但可见部分如下,据此解答如下问题:

(1)求分数在[5060)的频率及全班人数;

(2)求分数在[8090)的频数,并计算频率分布直方图中[8090)间的矩形的高;

(3)若规定:90(包含90)以上为优秀,现从分数在80(包含80)以上的试卷中任取两份分析学生失分情况,求在抽取的试卷中至少有一份优秀的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)求函数的最小正周期、最小值、对称轴、对称中心;

(2)设的内角的对边分别为,且,若,求的值.

查看答案和解析>>

同步练习册答案