精英家教网 > 高中数学 > 题目详情
15.已知f(x)=xlnx.
(1)求$g(x)=\frac{f(x)+2}{x}$的单调区间;
(2)若不等式k+2x-e≤f(x)恒成立,求k的取值范围.

分析 (1)求出g(x)的导数,解关于导函数的不等式,求出函数的单调区间即可;
(2)问题转化为k≤xlnx-2x+e恒成立,令h(x)=xlnx-2x+e,(x>0),求出函数的单调区间即可.

解答 解:(1)∵f(x)=xlnx,
∴g(x)=$\frac{xlnx+2}{x}$=lnx+$\frac{2}{x}$,
则g′(x)=$\frac{1}{x}$-$\frac{2}{{x}^{2}}$=$\frac{x-2}{{x}^{2}}$,
令g′(x)>0,解得:x>2,
令g′(x)<0,解得:0<x<2,
故g(x)在(0,2)递减,在(2,+∞)递增,
(2)若不等式k+2x-e≤f(x)恒成立,
则k≤xlnx-2x+e恒成立,
令h(x)=xlnx-2x+e,(x>0),
则h′(x)=lnx-1,
令h′(x)>0,解得:x>e,
令h′(x)<0,解得:0<x<e,
故h(x)在(0,e)递减,在(e,+∞)递增,
故h(x)min=h(e)=0,
故k≤0.

点评 本题考查了函数的单调性、最值问题,考查导数的应用,是一道中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

11.函数f(x)=log(2x-1)$\sqrt{3x-2}$的定义域是(  )
A.($\frac{2}{3}$,+∞)B.($\frac{2}{3}$,1)∪(1,+∞)C.($\frac{1}{2}$,+∞)D.($\frac{1}{2}$,1)∪(1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知函数f(x)=$\frac{x+1}{{e}^{x}-1}$+x(x∈(0,+∞),且f(x)在x0处取得最小值,则以下各式正确的序号为(  )
①f(x0)<x0+1              ②f(x0)=x0+1             ③f(x0)>x0+1               ④f(x0)<3                    ⑤f(x0)>3.
A.①④B.②④C.②⑤D.③⑤

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.如图所示的几何体,则该几何体的俯视图是选项图中的(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知函数$f(x)=\left\{\begin{array}{l}(a-2)x-1,x≤1\\{log}_{a}^{x},x>1\end{array}\right.$. 若f(x)在R上是单调递增函数,则实数a的取值范围是(  )
A.(2,3]B.(2,3)C.(2,+∞)D.(1,2)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.下列四个命题中,正确的是(  )
A.奇函数的图象一定过原点B.y=x2+1(-4<x≤4)是偶函数
C.y=|x+1|-|x-1|是奇函数D.y=x+1是奇函数

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.下列抽样实验中,适合用抽签法的是(  )
A.从某工厂生产的3000件产品中抽取600件进行质量检验
B.从某工厂生产的两箱(每箱15件)产品中抽取6件进行质量检验
C.从甲、乙两厂生产的两箱(每箱15件)产品中抽取6件进行质量检验
D.从某厂生产的3000件产品中抽取10件进行质量检验

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知数列{an} 的前n项和${S_n}=3{n^2}+8n$,{bn}是等差数列,且an=bn+bn+1
(1)求数列{bn}的通项公式;
(2)求${c_n}=\frac{{3{a_n}}}{{{b_n}-11}}$的最大项的值,并指出是第几项.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.设点M(x0,2-x0),设在圆O:x2+y2=1上存在点N,使得∠OMN=30°,则实数x0的取值范围为[0,2].

查看答案和解析>>

同步练习册答案