精英家教网 > 高中数学 > 题目详情

设函数,其中a为正实数.
(l)若x=0是函数的极值点,讨论函数的单调性;
(2)若上无最小值,且上是单调增函数,求a的取值范
围;并由此判断曲线与曲线交点个数.

(1)增区间为,减区间为;(2);0.

解析试题分析:(1)先求出,根据已知“是函数的极值点”,得到,解得,将其代入,求得,结合函数的定义域,利用导数求函数的单调区间;(2)先研究函数在区间没有极小值的情况:,当时,在区间上先减后增,有最小值;当时,在区间上是单调递增的,没有最小值.再研究函数在区间上是单调增函数:上恒成立,解得.综合两种情况得到的取值范围.根据可知,利用导数研究函数的单调性,得到在区间上的最小值是,与的取值范围矛盾,所以两曲线在区间上没有交点.
试题解析:(1) 由,                     2分
的定义域为:,                                      3分
 ,函数的增区间为,减区间为.      5分
(2),   
上有最小值
时,单调递增无最小值.              7分
上是单调增函数∴上恒成立,
.                                       9分
综上所述的取值范围为.                     10分
此时
,
则 h(x)在 单减,单增,               13分
极小值为. 故两曲线没有公共点.                 &

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知函数
(Ⅰ)求的单调区间;
(Ⅱ)若,证明当时,函数的图象恒在函数图象的上方.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(Ⅰ)若函数存在极值点,求实数的取值范围;
(Ⅱ)求函数的单调区间;
(Ⅲ)当时,令(),()为曲线上的两动点,O为坐标原点,能否使得是以O为直角顶点的直角三角形,且斜边中点在y轴上?请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数为自然对数的底数).
(Ⅰ)求函数的单调区间;
(Ⅱ)当时,若对任意的恒成立,求实数的值;
(Ⅲ)求证:.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(Ⅰ)若处的切线与直线平行,求的单调区间;
(Ⅱ)求在区间上的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数试讨论的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数f(x)的导函数为f ′(x),且对任意x>0,都有f ′(x)>
(Ⅰ)判断函数F(x)=在(0,+∞)上的单调性;
(Ⅱ)设x1,x2∈(0,+∞),证明:f(x1)+f(x2)<f(x1+x2);
(Ⅲ)请将(Ⅱ)中的结论推广到一般形式,并证明你所推广的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)若的解集是,求的值;
(2)若,解关于的不等式.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数均为正常数),设函数处有极值.
(1)若对任意的,不等式总成立,求实数的取值范围;
(2)若函数在区间上单调递增,求实数的取值范围.

查看答案和解析>>

同步练习册答案