精英家教网 > 高中数学 > 题目详情

【题目】设定义在(0,+∞)上的函数f(x)满足xf′(x)﹣f(x)=xlnx,f( )= ,则f(x)(
A.有极大值,无极小值
B.有极小值,无极大值
C.既有极大值,又有极小值
D.既无极大值,也无极小值

【答案】D
【解析】解:∵xf′(x)﹣f(x)=xlnx, ∴ =
=
=
= +c,
∴f(x)= +cx,
由f( )= ,解得c=
∴f(x)= + x,
∴f′(x)= (1+lnx)2≥0,
f(x)在(0,+∞)单调递增,
故函数f(x)无极值,
故选:D.
【考点精析】关于本题考查的函数的极值与导数,需要了解求函数的极值的方法是:(1)如果在附近的左侧,右侧,那么是极大值(2)如果在附近的左侧,右侧,那么是极小值才能得出正确答案.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,直线l过点P(2, )且倾斜角为α,以坐标原点为极点,x轴的非负半轴为极轴,建立极坐标系,曲线C的极坐标方程为ρ=4cos(θ﹣ ),直线l与曲线C相交于A,B两点;
(1)求曲线C的直角坐标方程;
(2)若 ,求直线l的倾斜角α的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系xOy中,曲线y=x2+mx﹣2与x轴交于A、B两点,点C的坐标为(0,1),当m变化时,解答下列问题:(12分)
(1)能否出现AC⊥BC的情况?说明理由;
(2)证明过A、B、C三点的圆在y轴上截得的弦长为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,已知直线l的参数方程为 (t为参数,0<α<π),以原点O为极点,以x轴正半轴为极轴建立极坐标系,曲线C的极坐标方程为ρ= (p>0).
(Ⅰ)写出直线l的极坐标方程和曲线C的直角坐标方程;
(Ⅱ)若直线l与曲线C相交于A,B两点,求 + 的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某篮球队对篮球运动员的篮球技能进行统计研究,针对篮球运动员在投篮命中时,运动员距篮筐中心的水平距离这项指标,对某运动员进行了若干场次的统计,依据统计结果绘制如下频率分布直方图:

(1)依据频率分布直方图估算该运动员投篮命中时,他到篮筐中心的水平距离的中位数;

(2)若从该运动员投篮命中时,他到篮筐中心的水平距离为2到5米的这三组中,用分层抽样的方法抽取7次成绩(单位:米,运动员投篮命中时,他到篮筐中心的水平距离越远越好),并从抽到的这7次成绩中随机抽取2次,并规定:成绩来自2到3米这一组时,记1分;成绩来自3到4米这一组时,记2分;成绩来4到5米的这一组记 4分,求该运动员2次总分不少于5分的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,ABCD是正方形,O是正方形的中心,PO⊥底面ABCDEPC的中点.

.求证:(PA∥平面BDE;()平面PAC⊥平面BDE(III)PB与底面所成的角为600, AB=2a,求三棱锥E-BCD的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)= ,直线y= x为曲线y=f(x)的切线(e为自然对数的底数).
(1)求实数a的值;
(2)用min{m,n}表示m,n中的最小值,设函数g(x)=min{f(x),x﹣ }(x>0),若函数h(x)=g(x)﹣cx2为增函数,求实数c的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】运货卡车以每小时x千米的速度匀速行驶130千米(50≤x≤100)(单位:千米/小时).假设汽油的价格是每升2元,而汽车每小时耗油(2+ )升,司机的工资是每小时14元.
(1)求这次行车总费用y关于x的表达式;
(2)当x为何值时,这次行车的总费用最低,并求出最低费用的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在“新零售”模式的背景下,某大型零售公司咪推广线下分店,计划在市的区开设分店,为了确定在该区开设分店的个数,该公司对该市已开设分店听其他区的数据作了初步处理后得到下列表格.记表示在各区开设分店的个数, 表示这个个分店的年收入之和.

(个)

2

3

4

5

6

(百万元)

2.5

3

4

4.5

6

(1)该公司已经过初步判断,可用线性回归模型拟合的关系,求关于的线性回归方程

(2)假设该公司在区获得的总年利润(单位:百万元)与之间的关系为,请结合(1)中的线性回归方程,估算该公司应在区开设多少个分店时,才能使区平均每个店的年利润最大?

(参考公式: ,其中

查看答案和解析>>

同步练习册答案