【题目】如图所示,在四棱锥中, ,底面为梯形, 且平面.
(1)证明:平面平面;
(2)当异面直线与所成角为时,求四棱锥的体积.
科目:高中数学 来源: 题型:
【题目】设为集合的子集,且,若,则称为集合的元“大同集”.
(1)写出实数集的一个二元“大同集”;
(2)是否存在正整数集的二元“大同集”,请说明理由;
(3)求出正整数集的所有三元“大同集”.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图所示,定义域为上的函数是由一条射线及抛物线的一部分组成.利用该图提供的信息解决下面几个问题.
(1)求的解析式;
(2)若关于的方程有三个不同解,求的取值范围;
(3)若,求的取值集合.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某企业准备推出一种花卉植物用于美化城市环境,为评估花卉的生长水平,现对该花卉植株的高度(单位:厘米)进行抽查,所得数据分组为,据此制作的频率分布直方图如图所示.
(1)求出直方图中的值;
(2)利用直方图估算花卉植株高度的中位数;
(3)若样本容量为32,现准备从高度在的植株中继续抽取2颗做进一步调查,求抽取植株来自同一组的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某学校举行了一次安全教育知识竞赛,竞赛的原始成绩采用百分制.已知高三学生的原始成绩均分布在内,发布成绩使用等级制,各等级划分标准见表.
原始成绩 | 85分及以上 | 70分到84分 | 60分到69分 | 60分以下 |
等级 | 优秀 | 良好 | 及格 | 不及格 |
为了解该校高三年级学生安全教育学习情况,从中抽取了名学生的原始成绩作为样本进行统计,按照的分组作出频率分布直方图如图所示,其中等级为不及格的有5人,优秀的有3人.
(1)求和频率分布直方图中的的值;
(2)根据样本估计总体的思想,以事件发生的频率作为相应事件发生的概率,若在该校高三学生中任选3人,求至少有1人成绩是及格以上等级的概率;
(3)在选取的样本中,从原始成绩在80分以上的学生中随机抽取3名学生进行学习经验介绍,记表示抽取的3名学生中优秀等级的学生人数,求随机变量的分布列及数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的两个焦点与短轴的一个端点是等边三角形的三个顶点,且长轴长为4.
求椭圆E的方程;
若A是椭圆E的左顶点,经过左焦点F的直线l与椭圆E交于C,D两点,求与为坐标原点的面积之差绝对值的最大值.
已知椭圆E上点处的切线方程为,T为切点若P是直线上任意一点,从P向椭圆E作切线,切点分别为N,M,求证:直线MN恒过定点,并求出该定点的坐标.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知抛物线上点处的切线方程为.
(Ⅰ)求抛物线的方程;
(Ⅱ)设和为抛物线上的两个动点,其中且,线段的垂直平分线与轴交于点,求面积的最大值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com