精英家教网 > 高中数学 > 题目详情
12.若角α的终边过点(-1,2),则cos(π-2α)的值为(  )
A.$\frac{3}{5}$B.-$\frac{3}{5}$C.$\frac{\sqrt{5}}{5}$D.-$\frac{\sqrt{5}}{5}$

分析 由条件利用任意角的三角函数的定义求得cosα的值,再利用诱导公式、二倍角的余弦公式求得cos(π-2α)的值.

解答 解:∵角α的终边过点(-1,2),∴cosα=$\frac{-1}{\sqrt{5}}$,
则cos(π-2α)=-cos2α=-(2cos2α-1)=1-2cos2α=1-$\frac{2}{5}$=$\frac{3}{5}$,
故选:A.

点评 本题主要考查任意角的三角函数的定义,诱导公式、二倍角的余弦公式的应用,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

2.函数y=2|1+x|的图象大致是(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知集合A={x|ax2+2x+1=0},若集合A有且仅有2个子集,则a的取值是(  )
A.1B.-1C.0或1D.-1,0或1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.在平面直角坐标系中,点P($\frac{1}{2}$,$\frac{2}{3}$)在角α的终边上,点Q($\frac{1}{3}$,-1)在角β的终边上,点M(sin$\frac{2π}{3}$,cos$\frac{2π}{3}$)在角γ终边上.
(1)求sinα,cosβ,tanγ的值;
(2)求sin(α+2β)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知中心在坐标原点的椭圆E的长轴的一个端点是抛物线y2=4$\sqrt{5}$x的焦点,且椭圆E的离心率是$\frac{\sqrt{5}}{5}$
(1)求椭圆E的方程;
(2)过点C(-1,0)的动直线与椭圆E相交于A,B两点.若线段AB的中点的横坐标是-$\frac{1}{2}$,求直线AB的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.如图是正方体平面展开图,在这个正方体中①BM∥平面ED;②CN与BE是异面直线;③CN与BM成60°角;④DC与BN垂直⑤平面BDM∥平面AFN
以上五个命题中,正确命题的个数是(  )
A.2B.3C.4D.5

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.下列函数中,在区间[0,2]上是增函数的是(  )
A.y=x2-4x+5B.y=log${\;}_{\frac{1}{2}}$xC.y=2-xD.y=$\sqrt{x}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.下列四组函数中,表示同一函数的是(  )
A.f(x)=log22x,g(x)=$\root{3}{{x}^{3}}$B.f(x)=$\sqrt{{x}^{2}}$,g(x)=x
C.f(x)=x,g(x)=$\frac{{x}^{2}}{x}$D.f(x)=lnx2,g(x)=2lnx

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知椭圆:$\frac{x^2}{9}+\frac{y^2}{4}=1$,左右焦点分别为F1,F2,过F1的直线l交椭圆于A,B 两点,则|$\overrightarrow{B{F}_{2}}$|+|$\overrightarrow{A{F}_{2}}$|的最大值为$\frac{28}{3}$.

查看答案和解析>>

同步练习册答案