精英家教网 > 高中数学 > 题目详情
8.已知a>0,设命题p:函数y=ax在R上单调递增;命题q:不等式ax2+ax+1>0对?x∈R恒成立,若p且q为假,p或q为真,求a的取值范围.

分析 先解命题,再研究命题的关系,函数y=ax在R上单调递增,由指数函数的单调性解决;等式ax2+ax+1>0对?x∈R恒成立,用函数思想,又因为是对全体实数成立,可用判断式法解决,若p且q为假,p或q为真,两者是一真一假,计算可得答案.

解答 解:∵y=ax在R上单调递增,
∴a>1;
又a>0,不等式ax2+ax+1>0对?x∈R恒成立,
∴△<0,即a2-4a<0,∴0<a<4,
∴q:0<a<4.
而命题p且q为假,p或q为真,那么p、q中有且只有一个为真,一个为假.
①若p真,q假,则a≥4;
②若p假,q真,则0<a≤1.
所以a的取值范围为(0,1]∪[4,+∞).

点评 本题通过逻辑关系来考查了函数单调性和不等式恒成立问题,这样考查使题目变得丰富多彩,考查面比较广.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

18.如图所示是2014年某大学自主招生面试环节中,六位评委为某考生打出的面试分数的茎叶统计图,若该生笔试成绩90分,下列关于该同学成绩的说法正确的是(  )
A.面试成绩的中位数为83
B.面试成绩的平均分为84
C.总成绩的众数为173
D.总成绩的方差与面试成绩的方差都是19

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知函数f(x)=ax3-x2+x-5在(-∞,+∞)上既有极大值,也有极小值,则实数a的取值范围为(  )
A.a>$\frac{1}{3}$B.a≥$\frac{1}{3}$C.a<$\frac{1}{3}$且a≠0D.a≤$\frac{1}{3}$且a≠0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知向量$\overrightarrow m=(sinx,cosx),\overrightarrow n=(cosx,\sqrt{3}cosx)$,函数f(x)=$\overrightarrow m•\overrightarrow n-\frac{{\sqrt{3}}}{2}$,x∈R.
(1)若f(x)=$\frac{1}{3}$,求$cos(2x+\frac{5}{6}π)$的值;
(2)△ABC的内角A满足:f(A)=$\frac{1}{2},A∈(0,\frac{π}{2})$,若b=$\sqrt{2}$,c=1,求△ABC外接圆的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.设点A(1,0),B(-1,0),若直线2x+y-b=0与线段AB相交,则b的取值范围是[-2,2].

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知(1+2$\sqrt{x}$)n的展开式中,某一项的系数是它前一项系数的2倍,而又等于它后一项系数的$\frac{5}{6}$.
(1)求展开后所有项的系数之和及所有项的二项式系数之和;
(2)求展开式中的有理项.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知F1、F2是椭圆$\frac{{x}^{2}}{100}$+$\frac{{y}^{2}}{64}$=1的两个焦点,P是椭圆上任意一点
(1)∠F1PF2=$\frac{π}{3}$,求△F1PF2的面积
(2)求|PF1||PF2|的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知函数f(x)=2sin(ωx),其中常数ω>0.
(1)若y=f(x)在$[-\frac{π}{4},\frac{2π}{3}]$上单调递增,求ω的取值范围;
(2)令ω=2,将函数y=f(x)的图象向左平移$\frac{π}{6}$个单位,再向上平移1个单位,得到函数y=g(x)的图象,区间[a,b](a,b∈R且a<b)满足:y=g(x)在[a,b]上至少含有30个零点,在所有满足上述条件的[a,b]中,求b-a的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知数列{an}的前n项和为Sn,满足Sn+$\frac{1}{{S}_{n}}$+2=an(n≥2),a1=-$\frac{2}{3}$,Sn-$\frac{n+1}{n+2}$.

查看答案和解析>>

同步练习册答案