精英家教网 > 高中数学 > 题目详情

【题目】某工厂某种产品的年固定成本为250万元,每生产件,需另投入成本,当年产量不足80件时, (万元),当年产量不少于80件时(万元),每件商品售价50万元,通过市场分析,该厂生产的商品能全部售完.

1)写出年利润(万元)关于年产量(件)的函数解析式;

2)年产量为多少件时,该厂在这一商品的生产中所获利润最大?

【答案】1(2)当产量为80件时,利润最大为1040万元.

【解析】【试题分析】1利润函数分为两段,当两种情况,用总销售额减去固定成本和可变成本,可求得利润函数表达式.2利用二次函数配方法和一次函数单调性求得函数的最大值.

【试题解析】

(1)依题意,

时,

时,

(2)当时,

∴当时,

时,

时,

∴当产量为80件时,利润最大为1040万元.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在直角坐标系xOy中,直线l的参数方程为 (t为参数).在以坐标原点为极点,x轴正半轴为极轴的极坐标系中,曲线C:ρ=2 cos(θ﹣ ).
(Ⅰ) 求直线l的普通方程和曲线C的直角坐标方程;
(Ⅱ) 求曲线C上的点到直线l的距离的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】命题p:关于x的方程x2+ax+2=0无实根,命题q:函数f(x)=logax在(0,+∞)上单调递增,若“p∧q”为假命题,“p∨q”真命题,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数对任意实数均有,其中常数为负数,且在区间上有表达式.

(1)写出上的表达式,并写出函数上的单调区间(不用过程,直接写出即可);

(2)求出上的最小值与最大值,并求出相应的自变量的取值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=(x﹣1)2
(Ⅰ)求函数的单调区间;
(Ⅱ)若函数f(x)有两个零点x1 , x2 , 证明x1+x2>2.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某同学参加学校自主招生3门课程的考试,假设该同学第一门课程取得优秀成绩概率为 ,第二、第三门课程取得优秀成绩的概率分别为p,q(p<q),且不同课程是否取得优秀成绩相互独立,记ξ为该生取得优秀成绩的课程数,其分布列为

ξ

0

1

2

3

p

x

y

(Ⅰ)求该生至少有1门课程取得优秀成绩的概率及求p,q的值;
(Ⅱ)求该生取得优秀成绩课程门数的数学期望Eξ.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数,则下列结论正确的是__________.(写出所有正确的编号)的最小正周期为在区间上单调递增;取得最大值的的集合为 ④将的图像向左平移个单位,得到一个奇函数的图像

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】李庄村某社区电费收取有以下两种方案供农户选择:

方案一每户每月收管理费2元,月用电不超过30度,每度0.4元,超过30度时,超过部分按每度0.5.

方案二不收管理费每度0.48.

1求方案一收费元与用电量(度)间的函数关系;

2小李家九月份按方案一交费34元,问小李家该月用电多少度?

3)小李家月用电量在什么范围时,选择方案一比选择方案二更好?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一副直角三角板(如图1)拼接,将△BCD折起,得到三棱锥A﹣BCD(如图2).

(1)若E,F分别为AB,BC的中点,求证:EF∥平面ACD;
(2)若平面ABC⊥平面BCD,求证:平面ABD⊥平面ACD.

查看答案和解析>>

同步练习册答案