精英家教网 > 高中数学 > 题目详情
已知函数y=f(X)是奇函数,定义域为 (-∞,0)∪(0,+∞),又y=f(X)在(0,,+∞)上为增函数,且f(-1)=0,则满足 f(X)>0 的x的取值范围是(  )
分析:先根据奇函数的定义求出f(1);再结合y=f(X)在(0,,+∞)上为增函数且奇函数的图象关于原点对称画出大致图象即可的出结论.
解答:解:由函数y=f(X)是奇函数
得f(-x)=-f(x)
∴f(1)=-f(-1)=0.
又因为y=f(X)在(0,,+∞)上为增函数且奇函数的图象关于原点对称.
∴函数的大致图象如图
∴当-1<x<0或0<x<1时,f(x)>0.
故选:D.
点评:本题主要考查奇函数的性质应用.奇函数的图象关于原点对称;偶函数的图象关于Y轴对称.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

16、已知函数y=f(x)是R上的奇函数且在[0,+∞)上是增函数,若f(a+2)+f(a)>0,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

2、已知函数y=f(x+1)的图象过点(3,2),则函数f(x)的图象关于x轴的对称图形一定过点(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数y=f(x)是偶函数,当x<0时,f(x)=x(1-x),那么当x>0时,f(x)=
-x(1+x)
-x(1+x)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数y=f(x)是定义在R上的奇函数,当x>0 时,f(x)的图象如图所示,则不等式x[f(x)-f(-x)]≤0 的解集为
[-3,3]
[-3,3]

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数y=f(x)的图象如图,则满足f(log2(x-1))•f(2-x2-1)≥0的x的取值范围为
(1,3]
(1,3]

查看答案和解析>>

同步练习册答案