精英家教网 > 高中数学 > 题目详情
如图所示,四棱锥S-ABCD中,ABCD,CD⊥面SAD.且
1
2
CD=SA=AD=SD=AB=1

(1)当H为SD中点时,求证:AH平面SBC;平面SBC⊥平面SCD.
(2)求点D到平面SBC的距离.
(1)取SC中点G,连接HG、BG.
∵H为SD的中点,∴HG
.
.
1
2
CD,又AB
.
.
1
2
CD
.(1分)
AB
.
.
HG
.故知四边形ABGH为平行四边形.∴AHBG,∴AH面SBC.(2分)
∵CD⊥面SAD,且CD?面SCD.
∴面SCD⊥面SAD,且交线为SD.(4分)
∵SA=AD=SD且SH=HD,∴AH⊥SD.
∴AH⊥面SCD,又AHBG,∴BG⊥面SCD,(6分)
又BG?面SBC.∴面SBC⊥面SCD.(7分)
(2)连接BD,设D到平面SBC的距离为h,则VD-SBC=
1
3
S△SBC•h
,(9分)
又VD-SBC=VB-SDC,∴
1
3
S△SBC•h=
1
3
S△SCD•BG

BG=AH=
3
2
S△SBC=
1
2
SC•BG=
15
4
.(11分)
S△SCD=
1
2
CD•SD=1
,∴h=
2
5
5
.(13分)
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:单选题

一只小球放入一长方体容器内,且恰与共点的三个面接触,若该球面上一点到这三个面的距离分别为4,5,5,则这只小球的半径是(  )
A.2或11B.8或11C.5或8D.3或8

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

如图,60°的二面角的棱上有A,B两点,直线AC,BD分别在这个二面角的两个半平面内,且都垂直于AB,已知AB=4,AC=6,BD=8,则CD的长为______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知A,B,C三点在球心为O,半径为3的球面上,且几何体O-ABC为正四面体,那么A,B两点的球面距离为______;点O到平面ABC的距离为______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,平行六面体ABCD-A1B1C1D1中,以顶点A为端点的三条棱长都为1,且两夹角为60°.
(1)求AC1的长;
(2)求BD1与AC夹角的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

设三棱锥s-ABC的顶点P在底面的射影S′(在△ABC内部)到三个侧面的距离相等,则S′是△ABC的(  )
A.外心B.垂心C.内心D.重心

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

三棱锥D-ABC及其三视图中的主视图和左视图如图所示,则棱BD的长为______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图:已知四棱锥P-ABCD中,PD⊥平面ABCD,ABCD是正方形,E是PA的中点,
求证:
(1)PC平面EBD.
(2)平面PBC⊥平面PCD.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图甲,在等边三角形ABC中,D,E分别是AB,AC边上的点,AD=AE,F是BC上的点,AF与DE交于点G,将△ABF沿AF折起,得到如图乙所示的三棱锥A-BCF,证明:DE平面BCF.

查看答案和解析>>

同步练习册答案