精英家教网 > 高中数学 > 题目详情

【题目】已知点是椭圆 上的一点,椭圆的右焦点为,斜率为的直线交椭圆两点,且三点互不重合.

(1)求椭圆的方程;

(2)求证:直线 的斜率之和为定值.

【答案】(1);(2)证明见解析.

【解析】试题分析:(1)由椭圆的定义可求得,然后可得,可得椭圆的方程;(2)设直线的方程为,将此方程代入椭圆方程可得整理得,设 ,由根与系数的关系可得 ,然后由斜率公式可得,即可得到结论。

试题解析:

(1)由题意得椭圆的左焦点为

由椭圆定义可得

解得

所以椭圆的方程为

(2)证明:设直线的方程为

三点不重合,故

消去y整理得

∵直线与椭圆交于两点,

解得

,① ,②

设直线 的斜率分别为

),

分别将①②式代入(),得

所以

即直线 的斜率之和为定值

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设f(x)= , g(x)是二次函数,若f(g(x))的值域是[0,+∞),则函数g(x)的值域是(  )
A.(﹣∞,﹣1]∪[1,+∞)
B.(﹣∞,﹣1]∪[0,+∞)
C.[0,+∞)
D.[1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知正△ABC三个顶点都在半径为2的球面上,球心O到平面ABC的距离为1,点E是线段AB的中点,过点E作球O的截面,则截面面积的最小值是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设为实数,函数, .

1)求的单调区间与极值;

2)求证:当时, .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知 分别为椭圆 的左、右焦点,点在椭圆上.

(Ⅰ)求的最小值;

(Ⅱ)设直线的斜率为,直线与椭圆交于 两点,若点在第一象限,且,求面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为迎接2017年“双”,“双”购物狂欢节的来临,某青花瓷生产厂家计划每天生产汤碗、花瓶、茶杯这三种瓷器共个,生产一个汤碗需分钟,生产一个花瓶需分钟,生产一个茶杯需分钟,已知总生产时间不超过小时.若生产一个汤碗可获利润元,生产一个花瓶可获利润元,生产一个茶杯可获利润元.

(1)使用每天生产的汤碗个数与花瓶个数表示每天的利润(元);

(2)怎样分配生产任务才能使每天的利润最大,最大利润是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列五个命题中:
①函数y=loga(2x﹣1)+2015(a>0且a≠1)的图象过定点(1,2015);
②若定义域为R函数f(x)满足:对任意互不相等的x1、x2都有(x1﹣x2)[f(x1)﹣f(x2)]>0,则f(x)是减函数;
③f(x+1)=x2﹣1,则f(x)=x2﹣2x;
④若函数f(x)=是奇函数,则实数a=﹣1;
⑤若a=(c>0,c≠1),则实数a=3.
其中正确的命题是 .(填上相应的序号).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图:在正方体ABCD﹣A1B1C1D1中,E为棱DD1的中点
(1)求证:BD1∥平面AEC
(2)求证:AC⊥BD1

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆的圆心坐标,直线被圆截得弦长为

(Ⅰ)求圆的方程;

(Ⅱ)从圆外一点向圆引切线,求切线方程。

查看答案和解析>>

同步练习册答案