【题目】已知点是椭圆: 上的一点,椭圆的右焦点为,斜率为的直线交椭圆于、两点,且、、三点互不重合.
(1)求椭圆的方程;
(2)求证:直线, 的斜率之和为定值.
科目:高中数学 来源: 题型:
【题目】设f(x)= , g(x)是二次函数,若f(g(x))的值域是[0,+∞),则函数g(x)的值域是( )
A.(﹣∞,﹣1]∪[1,+∞)
B.(﹣∞,﹣1]∪[0,+∞)
C.[0,+∞)
D.[1,+∞)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知, 分别为椭圆: 的左、右焦点,点在椭圆上.
(Ⅰ)求的最小值;
(Ⅱ)设直线的斜率为,直线与椭圆交于, 两点,若点在第一象限,且,求面积的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为迎接2017年“双”,“双”购物狂欢节的来临,某青花瓷生产厂家计划每天生产汤碗、花瓶、茶杯这三种瓷器共个,生产一个汤碗需分钟,生产一个花瓶需分钟,生产一个茶杯需分钟,已知总生产时间不超过小时.若生产一个汤碗可获利润元,生产一个花瓶可获利润元,生产一个茶杯可获利润元.
(1)使用每天生产的汤碗个数与花瓶个数表示每天的利润(元);
(2)怎样分配生产任务才能使每天的利润最大,最大利润是多少?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下列五个命题中:
①函数y=loga(2x﹣1)+2015(a>0且a≠1)的图象过定点(1,2015);
②若定义域为R函数f(x)满足:对任意互不相等的x1、x2都有(x1﹣x2)[f(x1)﹣f(x2)]>0,则f(x)是减函数;
③f(x+1)=x2﹣1,则f(x)=x2﹣2x;
④若函数f(x)=是奇函数,则实数a=﹣1;
⑤若a=(c>0,c≠1),则实数a=3.
其中正确的命题是 .(填上相应的序号).
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com