精英家教网 > 高中数学 > 题目详情

【题目】已知函数

1)讨论的单调性.

2,都有恒成立,求实数的取值范围.

【答案】1)见解析(2

【解析】

1)先对函数求导,得到,分别讨论两种情况,即可求出函数单调性;

2)根据题意,将,都有恒成立化为:时,恒成立;令,对其求导,用导数的方法研究其单调性,确定其范围,即可得出结果.

1

,即时,

上,上单调递减,

上,上单调递增;

时,即时,令

时,

上单调递增,在上单调递减,

上单调递增;

上单调递增,在上单调递减,

上单调递增;

,即上单调递增;

2,对恒成立

恒成立;

时,恒成立;

时,上单调递增;

只要即可

时,令

上单调递减,在上单调递增;

,不合题意;

综上.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某印刷厂为了研究印刷单册书籍的成本(单位:元)与印刷册数(单位:千册)之间的关系,在印制某种书籍时进行了统计,相关数据见下表.

印刷册数(千册)

2

3

4

5

8

单册成本(元)

3.2

2.4

2

1.9

1.7

根据以上数据,技术人员分别借助甲、乙两种不同的回归模型,得到了两个回归方程,方程甲:,方程乙:.

1)为了评价两种模型的拟合效果,完成以下任务.

i)完成下表(计算结果精确到0.1);

印刷册数(千册)

2

3

4

5

8

单册成本(元)

3.2

2.4

2

1.9

1.7

模型甲

估计值

2.4

2.1

1.6

残差

0

-0.1

0.1

模型乙

估计值

2.3

2

1.9

残差

0.1

0

0

ii)分别计算模型甲与模型乙的残差平方和,并通过比较的大小,判断哪个模型拟合效果更好.

2)该书上市之后,受到广大读者热烈欢迎,不久便全部售罄,于是印刷厂决定进行二次印刷.根据市场调查,新需求量为10千册,若印刷厂以每册5元的价格将书籍出售给订货商,试估计印刷厂二次印刷获得的利润.(按(1)中拟合效果较好的模型计算印刷单册书的成本)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,平面平面,在中,的中点,四边形是等腰梯形,

(Ⅰ)求异面直线所成角的正弦值;

(Ⅱ)求证:平面平面

(Ⅲ)求直线与平面所成角的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,曲线在点处的切线方程为.

(1)求函数的解析式,并证明:.

(2)已知,且函数与函数的图象交于两点,且线段的中点为,证明:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥PABCD中,PA⊥底面ABCDADBCABACAD3PABC4.

1)求异面直线PBCD所成角的余弦值;

2)求平面PAD与平面PBC所成锐二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】随着城市地铁建设的持续推进,市民的出行也越来越便利.根据大数据统计,某条地铁线路运行时,发车时间间隔t(单位:分钟)满足:4≤t≤15N,平均每趟地铁的载客人数p(t)(单位:人)与发车时间间隔t近似地满足下列函数关系:,其中.

(1)若平均每趟地铁的载客人数不超过1500人,试求发车时间间隔t的值.

(2)若平均每趟地铁每分钟的净收益为(单位:元),问当发车时间间隔t为多少时,平均每趟地铁每分钟的净收益最大?井求出最大净收益.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数处取得极值.

(1)求的解析式及单调区间;

(2)若对任意的恒成立,证明.

参考数据:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,某游乐园的一个摩天轮半径为10米,轮子的底部在地面上2米处,如果此摩天轮每20分钟转一圈,当摩天轮上某人经过处时开始计时(按逆时针方向转),(其中平行于地面).

1)求开始转动5分钟时此人相对于地面的高度.

2)开始转动分钟时,摩天轮上此人经过点,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在以为顶点的五面体中,平面平面,四边形为平行四边形,且.

(1)求证:

(2)若,直线与平面所成角为,求平面与平面所成锐二面角的余弦值.

查看答案和解析>>

同步练习册答案