精英家教网 > 高中数学 > 题目详情
(理)(14分)设函数,其中
(I)当时,判断函数在定义域上的单调性;
(II)求函数的极值点;
(III)证明对任意的正整数n,不等式都成立.
(1)在定义域是增函数;(2)见解析;(3)见解析.
(1)先确定函数的定义域,求得在定义域上是增函数;
(2)由(1)得在定义域上是增函数,不存在极值点;有两个根,判断两个根是否在定义域内,判定单调性即得到函数的极值;
(3)令构造函数,判断单调性可得,令,就可以证得结论。
 
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知函数取得极值
(1)求的单调区间(用表示);
(2)设,若存在,使得成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数
(Ⅰ)当a=﹣2时,求函数f(x)的单调区间;
(Ⅱ)若g(x)= +1,+∞)上是单调函数,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数处取得极值,
(1)求实数的值;
(2)若关于的方程在区间上恰有两个不同的实数根,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知三次函数
(1)若函数过点且在点处的切线方程是,求函数的解析式;
(2)在(1)的条件下,若对于区间上任意两个自变量的值,都有,求实数的最小值。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题满分10 分)已知函数f(x)=x3-ax2+3x.
(1) 若x=3是f(x)的极值点,求f(x)在x∈[1,a]上的最大值和最小值.
(2) 若f(x)在x∈[1,+∞)上是增函数,求实数a的取值范围;

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数f(x)= x/4+ln(x-2)/(x-4),(1)求函数f)x)的定义域和极值;(2)若函数(fx)在区间[a2-5a,8-3a]上为增函数,求实数a的取值范围;(3)函数f(x)的图象是否为中心对称图形?若是请指出对称中心,并证明;若不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

f'(x)是f(x)的导函数,f'(x)的图象如右图所示,则f(x)的图象只可能是(   )
(A)       (B)      (C)     (D)

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数f(x)=x2-(2a+1)x+alnx.
(1)当a=1时,求函数f(x)的单调增区间;
(2)求函数f(x)在区间[1,e]上的最小值;

查看答案和解析>>

同步练习册答案