精英家教网 > 高中数学 > 题目详情

【题目】已知函数

1)当时,若函数)处导数相等,证明:

2)是否存在,使直线是曲线的切线,也是曲线的切线,而且这样的直线是唯一的,如果存在,求出直线方程,如果不存在,请说明理由.

【答案】1)见解析(2)存在,

【解析】

1)求导,则,化简得到,再利用均值不等式到答案.

2)先设切点求切线方程,再根据切线重合得关于一个切点横坐标的函数,利用导数研究函数只有一个零点的情况,即得答案.

1)当时,,所以

由题意,得,因为,所以

所以,所以

所以

2)曲线在点处的切线方程为:

函数在点处的切线方程

要存在直线,使是曲线的切线,也是曲线的切线,

只需在处使重合,

所以

由①得代入②整理得

时,单调递减;

时,单调递增,

,设

时,单调递增;

时,单调递减.

所以

(ⅰ)当时,,所以

此时,所以方程有唯一解

,此时切线方程为

(ⅱ)当时,

时,,则

函数单调递增,当时,函数单调递减,故

,同理可证成立.

因为,则

.

又由当时,,可得

所以函数有两个零点,

即方程有两个根

,此时,则

所以

因为,所以,所以直线不唯一.

综上所述,存在,使是曲线的切线,也是曲线的切线,而且这样的直线是唯一的.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数

1)讨论的单调性;

2)若对任意恰有一个零点,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】ABC中,角ABC的对边分别为abc,且(a+bc)(sinA+sinB+sinC)=bsinA

1)求C

2)若a2c5,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,底面为正方形,底面为线段的中点.

1)若为线段上的动点,证明:平面平面

2)若为线段上的动点(不含),,三棱锥的体积是否存在最大值?如果存在,求出最大值;如果不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知在四棱锥中,的中点,是等边三角形,平面平面.

1)求证:平面

2)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知曲线上任意一点满足,直线的方程为,且与曲线交于不同两点.

1)求曲线的方程;

2)设点,直线的斜率分别为,且,判断直线是否过定点?若过定点,求该定点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】直线l的参数方程为t为参数),以坐标原点O为极点,x轴正半轴为极轴建立极坐标系,曲线C的极坐标方程为ρsin2θ4acosθ,直线l与曲线C交于不同的两点MN

1)求实数a的取值范围;

2)已知a0,设点P(﹣1,﹣2),若|PM||MN||PN|成等比数列,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】1772年德国的天文学家波得发现了求太阳的行星距离的法则,记地球距离太阳的平均距离为10,可以算得当时已知的六大行星距离太阳的平均距离如下表:

星名

水星

金星

地球

火星

木星

土星

与太阳的距离

4

7

10

16

52

100

除水星外,其余各星与太阳的距离都满足波得定则(某一数列规律),当时德国数学家高斯根据此定则推算,火星和木星之间距离太阳28还有一颗大行星,1801年,意大利天文学家皮亚齐经过观测,果然找到了火星和木星之间距离太阳28的谷神星以及它所在的小行星带,请你根据这个定则,估算从水星开始由近到远算,第10个行星与太阳的平均距离大约是(

A.388B.772C.1540D.3076

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)判断函数上的单调性,并证明;

2)若恒成立,求的最小值;

3)记,求集合中正整数的个数;

查看答案和解析>>

同步练习册答案