【题目】已知函数f(x)的图像可以由y=cos2x的图像先纵坐标不变横坐标伸长到原来的2倍,再横坐标不变纵坐标伸长到原来的2倍,最后向右平移个单位而得到.
⑴求f(x)的解析式与最小正周期;
⑵求f(x)在x∈(0,π)上的值域与单调性.
科目:高中数学 来源: 题型:
【题目】定义在R上的函数满足,且当时,,对任意R,均有.
(1)求证:;
(2)求证:对任意R,恒有;
(3)求证:是R上的增函数;
(4)若,求的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设函数,其中是实数.
(l)若 ,求函数的单调区间;
(2)当时,若为函数图像上一点,且直线与相切于点,其中为坐标原点,求的值;
(3) 设定义在上的函数在点处的切线方程为,若在定义域内恒成立,则称函数具有某种性质,简称“函数”.当时,试问函数是否为“函数”?若是,请求出此时切点的横坐标;若不是,清说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在一个半径为1的半球材料中截取两个高度均为的圆柱,其轴截面如图所示.设两个圆柱体积之和为.
(1)求的表达式,并写出的取值范围;
(2)求两个圆柱体积之和的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在某校举行的航天知识竞赛中,参与竞赛的文科生与理科生人数之比为1∶3,且成绩分布在[40,100],分数在80以上(含80)的同学获奖.按文、理科用分层抽样的方法抽取200人的成绩作为样本,得到成绩的频率分布直方图如图所示.
(1)求a的值,并计算所抽取样本的平均值 (同一组中的数据用该组区间的中点值作代表);
(2)填写下面的2×2列联表,并判断能否有超过95%的把握认为“获奖与学生的文、理科有关”?
文科生 | 理科生 | 合计 | |
获奖 | 5 | ||
不获奖 | |||
合计 | 200 |
附表及公式:
P(K2≥k0) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k0 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】直三棱柱ABC﹣A1B1C1的底面是等腰直角三角形,AB=AC=2,四棱锥C﹣ABB1A1的体积等于4.
(1)求AA1的值;
(2)求C1到平面A1B1C的距离.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】己知函数f(x)=xlnx.
(1)求曲线f(x)在点(1,f(1))处的切线方程;
(2)对x≥1,f(x)≤m(x2﹣1)成立,求实数m的最小值;
(3)证明:1n .(n∈N*)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com