精英家教网 > 高中数学 > 题目详情
18.$\frac{1+cos20°}{2sin20°}$-sin10°($\frac{1}{tan5°}$-tan5°)=(  )
A.$\frac{\sqrt{3}}{2}$B.$\frac{\sqrt{2}}{2}$C.1D.2

分析 切化弦,然后利用倍角公式及两角和与差的正弦化简求值.

解答 解:$\frac{1+cos20°}{2sin20°}$-sin10°($\frac{1}{tan5°}$-tan5°)
=$\frac{2co{s}^{2}10°}{4sin10°cos10°}-sin10°(\frac{cos5°}{sin5°}-\frac{sin5°}{cos5°})$
=$\frac{cos10°}{2sin10°}-2sin5°cos5°•\frac{co{s}^{2}5°-si{n}^{2}5°}{sin5°cos5°}$
=$\frac{cos10°}{2sin10°}-2cos10°$
=$\frac{cos10°-4sin10°cos10°}{2sin10°}$
=$\frac{cos10°-2sin20°}{2sin10°}$
=$\frac{cos10°-2sin(30°-10°)}{2sin10°}$
=$\frac{cos10°-2(sin30°cos10°-cos30°sin10°)}{2sin10°}$
=cos30°
=$\frac{\sqrt{3}}{2}$.
故选:A.

点评 本题考查三角函数的化简与求值,考查了计算能力,关键是化切为弦,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

8.已知二次函数f(x)满足f(x+1)-f(x)=2x,且f(0)=1.
(1)求f(x).
(2)在区间[-1,1]上,函数f(x)的图象恒在直线y=2x+m的上方,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知二次函数f(x)=2x2-4(a-1)x-a2+2a+9,若在[-1,1]上至少存在一个实数m,使得f(m)>0,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知f(x+1)的定义域[-1,1],则函数f(x-1)的定义域为(  )
A.[0,2]B.[1,3]C.[-1,1]D.[-2,0]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.若函数f(x)唯一的一个零点同时在区间(0,16)、(0,8)、(0,4)、(0,2)内,那么下列命题中正确的是(  )
A.函数f(x)在区间(0,1)内有零点B.函数f(x)在区间(0,1)或(1,2)内有零点
C.函数f(x)在区间[2,16)内无零点D.函数f(x)在区间(1,16)内无零点

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.设函数f(x)=$\left\{\begin{array}{l}{log_2}x,x>0\\{4^x},x≤0\end{array}$,则f[f(-1)]=_-2;若函数f(x)与y=k存在两个交点,则实数k的取值范围是(0,1].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.求函数y=(2x-3)(x+2)+(3x+1)(1-x)在x=3处的导数.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知点M(5,-6)和向量$\overrightarrow{a}$=(1,-2),若$\overrightarrow{MN}$=-3$\overrightarrow{a}$,则点N的坐标为(  )
A.(-3,6)B.(2,0)C.(6,2)D.(-2,0)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.设Pn=(1-x)2n-1,Qn=1-(2n-1)x+(n-1)(2n-1)x2,x∈R,n∈N*
(1)当n≤2时,试指出Pn与Qn的大小关系;
(2)当n≥3时,试比较Pn与Qn的大小,并证明你的结论.

查看答案和解析>>

同步练习册答案