15£®ÒÑÖªÍÖÔ²$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1£¨a£¾b£¾0}£©µÄ×󶥵ãΪ£¨-$\sqrt{5}$£¬0£©£¬ÆäÀëÐÄÂʵÈÓÚ$\frac{{2\sqrt{5}}}{5}$£®
£¨¢ñ£©ÇóÍÖÔ²µÄ·½³Ì£»
£¨¢ò£©ÈôÍÖÔ²µÄ×ó¡¢ÓÒ½¹µã·Ö±ðΪF1£¬F2£¬OΪ×ø±êÔ­µã£¬µãO¹ØÓÚÖ±Ïßx+y-2=0µÄ¶Ô³ÆµãΪF£¬ÒÔFΪԲÐÄ£¬¾­¹ýF2µÄÔ²¼ÇΪF£¬¾­¹ýÔ­µãµÄÖ±Ïßl½»ÍÖÔ²ºÍÔ²FËùµÃµÄÏÒ³¤·Ö±ðΪm£¬n£¬Çóµ±mnÈ¡×î´óֵʱ£¬Ö±ÏßlµÄ·½³Ì£®

·ÖÎö £¨I£©ÓÉÌâÒâ¿ÉµÃ£º$\left\{\begin{array}{l}{a=\sqrt{5}}\\{\frac{c}{a}=\frac{2\sqrt{5}}{5}}\\{{a}^{2}={b}^{2}+{c}^{2}}\end{array}\right.$£¬½â³ö¼´¿ÉµÃ³ö£®
£¨II£©F1£¨-2£¬0£©£¬F2£¨2£¬0£©£®ÉèµãO¹ØÓÚÖ±Ïßx+y-2=0µÄ¶Ô³ÆµãΪF£¨s£¬t£©£¬ÀûÓô¹Ö±Æ½·ÖÏßµÄÐÔÖʿɵãºF£¨2£¬2£©£®¿ÉµÃ¡ÑFµÄ·½³ÌΪ£º£¨x-2£©2+£¨y-2£©2=4£®
ÉèÖ±ÏßlµÄ·½³ÌΪ£ºy=kx£¬ÓëÍÖÔ²ÏཻÓÚµãM£¨x1£¬y1£©£¬N£¨x2£¬y2£©£»Óë¡ÑFÏཻÓÚG£¬H£®ÓëÍÖÔ²·½³ÌÁªÁ¢¿ÉµÃ£º${x}_{M}^{2}$=$\frac{5}{1+{5k}^{2}}$£¬${y}_{M}^{2}$=$\frac{5{k}^{2}}{1+5{k}^{2}}$£¬¿ÉµÃ|MN|2=4£¨${x}_{M}^{2}$+${y}_{M}^{2}$£©£®Ô²ÐÄFµ½Ö±ÏßlµÄ¾àÀëd=$\frac{|2k-2|}{\sqrt{{k}^{2}+1}}$£¬¿ÉµÃ|GH|2=4£¨R2-d2£©£®¿ÉµÃ£¨mn£©2=$\frac{640k}{1+5{k}^{2}}$£¬ÀûÓûù±¾²»µÈʽµÄÐÔÖʼ´¿ÉµÃ³ö£®

½â´ð ½â£º£¨I£©ÓÉÌâÒâ¿ÉµÃ£º$\left\{\begin{array}{l}{a=\sqrt{5}}\\{\frac{c}{a}=\frac{2\sqrt{5}}{5}}\\{{a}^{2}={b}^{2}+{c}^{2}}\end{array}\right.$£¬½âµÃ$a=\sqrt{5}$£¬c=2£¬b=1£®
¡àÍÖÔ²µÄ·½³ÌΪ$\frac{{x}^{2}}{5}+{y}^{2}=1$£®
£¨II£©F1£¨-2£¬0£©£¬F2£¨2£¬0£©£®
ÉèµãO¹ØÓÚÖ±Ïßx+y-2=0µÄ¶Ô³ÆµãΪF£¨s£¬t£©£¬
Ôò$\left\{\begin{array}{l}{\frac{t}{s}=1}\\{\frac{s}{2}+\frac{t}{2}-2=0}\end{array}\right.$£¬½âµÃs=t=2£®
¡àF£¨2£¬2£©£®
|FF2|=2£®
¡à¡ÑFµÄ·½³ÌΪ£º£¨x-2£©2+£¨y-2£©2=4£®
ÉèÖ±ÏßlµÄ·½³ÌΪ£ºy=kx£¬£¨k£¾0£©£®ÓëÍÖÔ²ÏཻÓÚµãM£¨x1£¬y1£©£¬N£¨x2£¬y2£©£»Óë¡ÑFÏཻÓÚG£¬H£®
ÁªÁ¢$\left\{\begin{array}{l}{y=kx}\\{{x}^{2}+5{y}^{2}=5}\end{array}\right.$£¬½âµÃ${x}_{M}^{2}$=$\frac{5}{1+{5k}^{2}}$£¬${y}_{M}^{2}$=$\frac{5{k}^{2}}{1+5{k}^{2}}$£¬
¡à|MN|2=4£¨${x}_{M}^{2}$+${y}_{M}^{2}$£©=4£¨$\frac{5}{1+{5k}^{2}}$+$\frac{5{k}^{2}}{1+5{k}^{2}}$£©=$\frac{20£¨1+{k}^{2}£©}{1+5{k}^{2}}$£®
Ô²ÐÄFµ½Ö±ÏßlµÄ¾àÀëd=$\frac{|2k-2|}{\sqrt{{k}^{2}+1}}$£¬
¡à|GH|2=4£¨R2-d2£©=4$£¨4-\frac{£¨2k-2£©^{2}}{{k}^{2}+1}£©$=$\frac{32k}{1+{k}^{2}}$£®
¡à£¨mn£©2=$\frac{20£¨1+{k}^{2}£©}{1+5{k}^{2}}$¡Á$\frac{32k}{1+{k}^{2}}$=$\frac{640k}{1+5{k}^{2}}$=$\frac{640}{\frac{1}{k}+5k}$$¡Ü\frac{640}{2\sqrt{5}}$=64$\sqrt{5}$£¬µ±ÇÒ½öµ±k=$\frac{\sqrt{5}}{5}$ʱȡµÈºÅ£®
¡àÖ±ÏßlµÄ·½³ÌΪ£ºy=$\frac{\sqrt{5}}{5}x$£®

µãÆÀ ±¾Ì⿼²éÁËÍÖÔ²µÄ±ê×¼·½³Ì¼°ÆäÐÔÖÊ¡¢Ö±ÏßÓëÍÖÔ²ÏཻÎÊÌâת»¯Îª·½³ÌÁªÁ¢¿ÉµÃ¸ùÓëϵÊýµÄ¹Øϵ¡¢ÏÒ³¤¹«Ê½¡¢Ô²µÄÐÔÖÊ¡¢Á½µãÖ®¼äµÄ¾àÀ빫ʽ¡¢µãµ½Ö±ÏߵľàÀ빫ʽ£¬¿¼²éÁËÍÆÀíÄÜÁ¦Óë¼ÆËãÄÜÁ¦£¬ÊôÓÚÄÑÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

5£®ÒÑÖªf£¨x£©=log2£¨1-x£©£¬Ôòº¯Êýg£¨x£©=f£¨|x|£©µÄµ¥µ÷ÔöÇø¼äΪ£¨-1£¬0]£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

6£®ÔÚ¡÷ABCÖУ¬Èôcos2A+cos2B£¾2cos2C£¬Ôò¡÷ABCµÄÐÎ×´ÊÇ£¨¡¡¡¡£©
A£®¶Û½ÇÈý½ÇÐÎB£®Ö±½ÇÈý½ÇÐÎC£®Èñ½ÇÈý½ÇÐÎD£®²»ÄÜÈ·¶¨

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

3£®ÊÔÔÚÊýÖáÉϱíʾ³ö²»µÈʽµÄ½â£®
£¨1£©x£¨x2-1£©£¾0£»
£¨2£©|x-1|£¼|x-3|£»
£¨3£©$\sqrt{x-1}$-$\sqrt{2x-1}$¡Ý$\sqrt{3x-2}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

10£®2012Äê3ÔÂ2ÈÕ£¬¹ú¼Ò»·±£²¿·¢²¼ÁËÐÂÐÞ¶©µÄ¡¶»·¾³¿ÕÆøÖÊÁ¿±ê×¼¡·£®ÆäÖй涨£º¾ÓÃñÇøµÄPM2.5Äêƽ¾ùŨ¶È²»µÃ³¬¹ý35΢¿Ë/Á¢·½Ã×£¬PM2.5µÄ24Сʱƽ¾ùŨ¶È²»µÃ³¬¹ý75΢¿Ë/Á¢·½Ã×£®Ä³³ÇÊл·±£²¿ÃÅËæ»ú³éÈ¡ÁËÒ»¾ÓÃñÇøÈ¥Äê20ÌìPM2.5µÄ24Сʱƽ¾ùŨ¶ÈµÄ¼à²âÊý¾Ý£¬Êý¾Ýͳ¼ÆÈçÏ£º
×é±ðPM2.5Ũ¶È£¨Î¢¿Ë/Á¢·½Ã×£©ÆµÊý£¨Ì죩ƵÂÊ
µÚÒ»×飨0£¬25]50.25
µÚ¶þ×飨25£¬50]100.5
µÚÈý×飨50£¬75]30.15
µÚËÄ×飨75£¬100£©20.1
£¨¢ñ£©´ÓÑù±¾ÖÐPM2.5µÄ24Сʱƽ¾ùŨ¶È³¬¹ý50΢¿Ë/Á¢·½Ã×µÄ5ÌìÖУ¬Ëæ»ú³éÈ¡2Ì죬ÇóÇ¡ºÃÓÐÒ»ÌìPM2.5µÄ24Сʱƽ¾ùŨ¶È³¬¹ý75΢¿Ë/Á¢·½Ã׵ĸÅÂÊ£»
£¨¢ò£©ÇóÑù±¾Æ½¾ùÊý£¬²¢¸ù¾ÝÑù±¾¹À¼Æ×ÜÌåµÄ˼Ï룬´ÓPM2.5µÄÄêƽ¾ùŨ¶È¿¼ÂÇ£¬ÅжϸþÓÃñÇøµÄ»·¾³ÊÇ·ñÐèÒª¸Ä½ø£¿ËµÃ÷ÀíÓÉ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

20£®ÒÑÖªa1£¬a2£¬a3²»È«ÎªÁ㣬ÉèÕýÊýx£¬yÂú×ãx2+y2=2£¬Áî$\frac{{x{a_1}{a_2}+y{a_2}{a_3}}}{a_1^2+a_2^2+a_3^2}$¡ÜM£¬ÔòMµÄ×îСֵΪ$\frac{\sqrt{2}}{2}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

7£®ÔÚƽÃæÖ±½Ç×ø±êϵxOyÖУ¬µãMÊÇÍÖÔ²$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1£¨a£¾b£¾0£©Éϵĵ㣬ÒÔMΪԲÐĵÄÔ²ÓëxÖáÏàÇÐÓÚÍÖÔ²µÄ½¹µãF£¬Ô²MÓëyÖáÏཻÓÚP£¬QÁ½µã£®Èô¡÷PQMÊÇÈñ½ÇÈý½ÇÐΣ¬Ôò¸ÃÍÖÔ²ÀëÐÄÂʵÄÈ¡Öµ·¶Î§ÊÇ£¨$\frac{\sqrt{6}-\sqrt{2}}{2}$£¬$\frac{\sqrt{5}-1}{2}$£©£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

4£®Èçͼ£¬ÔÚ¡÷ABCÖУ¬µãMÊÇBCµÄÖе㣬µãNÔÚ±ßACÉÏ£¬ÇÒAN=3NC£¬AMÓëBNÏཻÓÚµãP£¬ÇóAM£ºPMµÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

6£®ÈçͼËùʾµÄ³ÌÐò¿òͼµÄÊä³ö½á¹ûÊÇ-1£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸