·ÖÎö £¨I£©ÓÉÌâÒâ¿ÉµÃ£º$\left\{\begin{array}{l}{a=\sqrt{5}}\\{\frac{c}{a}=\frac{2\sqrt{5}}{5}}\\{{a}^{2}={b}^{2}+{c}^{2}}\end{array}\right.$£¬½â³ö¼´¿ÉµÃ³ö£®
£¨II£©F1£¨-2£¬0£©£¬F2£¨2£¬0£©£®ÉèµãO¹ØÓÚÖ±Ïßx+y-2=0µÄ¶Ô³ÆµãΪF£¨s£¬t£©£¬ÀûÓô¹Ö±Æ½·ÖÏßµÄÐÔÖʿɵãºF£¨2£¬2£©£®¿ÉµÃ¡ÑFµÄ·½³ÌΪ£º£¨x-2£©2+£¨y-2£©2=4£®
ÉèÖ±ÏßlµÄ·½³ÌΪ£ºy=kx£¬ÓëÍÖÔ²ÏཻÓÚµãM£¨x1£¬y1£©£¬N£¨x2£¬y2£©£»Óë¡ÑFÏཻÓÚG£¬H£®ÓëÍÖÔ²·½³ÌÁªÁ¢¿ÉµÃ£º${x}_{M}^{2}$=$\frac{5}{1+{5k}^{2}}$£¬${y}_{M}^{2}$=$\frac{5{k}^{2}}{1+5{k}^{2}}$£¬¿ÉµÃ|MN|2=4£¨${x}_{M}^{2}$+${y}_{M}^{2}$£©£®Ô²ÐÄFµ½Ö±ÏßlµÄ¾àÀëd=$\frac{|2k-2|}{\sqrt{{k}^{2}+1}}$£¬¿ÉµÃ|GH|2=4£¨R2-d2£©£®¿ÉµÃ£¨mn£©2=$\frac{640k}{1+5{k}^{2}}$£¬ÀûÓûù±¾²»µÈʽµÄÐÔÖʼ´¿ÉµÃ³ö£®
½â´ð ½â£º£¨I£©ÓÉÌâÒâ¿ÉµÃ£º$\left\{\begin{array}{l}{a=\sqrt{5}}\\{\frac{c}{a}=\frac{2\sqrt{5}}{5}}\\{{a}^{2}={b}^{2}+{c}^{2}}\end{array}\right.$£¬½âµÃ$a=\sqrt{5}$£¬c=2£¬b=1£®
¡àÍÖÔ²µÄ·½³ÌΪ$\frac{{x}^{2}}{5}+{y}^{2}=1$£®
£¨II£©F1£¨-2£¬0£©£¬F2£¨2£¬0£©£®
ÉèµãO¹ØÓÚÖ±Ïßx+y-2=0µÄ¶Ô³ÆµãΪF£¨s£¬t£©£¬
Ôò$\left\{\begin{array}{l}{\frac{t}{s}=1}\\{\frac{s}{2}+\frac{t}{2}-2=0}\end{array}\right.$£¬½âµÃs=t=2£®
¡àF£¨2£¬2£©£®
|FF2|=2£®
¡à¡ÑFµÄ·½³ÌΪ£º£¨x-2£©2+£¨y-2£©2=4£®
ÉèÖ±ÏßlµÄ·½³ÌΪ£ºy=kx£¬£¨k£¾0£©£®ÓëÍÖÔ²ÏཻÓÚµãM£¨x1£¬y1£©£¬N£¨x2£¬y2£©£»Óë¡ÑFÏཻÓÚG£¬H£®
ÁªÁ¢$\left\{\begin{array}{l}{y=kx}\\{{x}^{2}+5{y}^{2}=5}\end{array}\right.$£¬½âµÃ${x}_{M}^{2}$=$\frac{5}{1+{5k}^{2}}$£¬${y}_{M}^{2}$=$\frac{5{k}^{2}}{1+5{k}^{2}}$£¬
¡à|MN|2=4£¨${x}_{M}^{2}$+${y}_{M}^{2}$£©=4£¨$\frac{5}{1+{5k}^{2}}$+$\frac{5{k}^{2}}{1+5{k}^{2}}$£©=$\frac{20£¨1+{k}^{2}£©}{1+5{k}^{2}}$£®
Ô²ÐÄFµ½Ö±ÏßlµÄ¾àÀëd=$\frac{|2k-2|}{\sqrt{{k}^{2}+1}}$£¬
¡à|GH|2=4£¨R2-d2£©=4$£¨4-\frac{£¨2k-2£©^{2}}{{k}^{2}+1}£©$=$\frac{32k}{1+{k}^{2}}$£®
¡à£¨mn£©2=$\frac{20£¨1+{k}^{2}£©}{1+5{k}^{2}}$¡Á$\frac{32k}{1+{k}^{2}}$=$\frac{640k}{1+5{k}^{2}}$=$\frac{640}{\frac{1}{k}+5k}$$¡Ü\frac{640}{2\sqrt{5}}$=64$\sqrt{5}$£¬µ±ÇÒ½öµ±k=$\frac{\sqrt{5}}{5}$ʱȡµÈºÅ£®
¡àÖ±ÏßlµÄ·½³ÌΪ£ºy=$\frac{\sqrt{5}}{5}x$£®
µãÆÀ ±¾Ì⿼²éÁËÍÖÔ²µÄ±ê×¼·½³Ì¼°ÆäÐÔÖÊ¡¢Ö±ÏßÓëÍÖÔ²ÏཻÎÊÌâת»¯Îª·½³ÌÁªÁ¢¿ÉµÃ¸ùÓëϵÊýµÄ¹Øϵ¡¢ÏÒ³¤¹«Ê½¡¢Ô²µÄÐÔÖÊ¡¢Á½µãÖ®¼äµÄ¾àÀ빫ʽ¡¢µãµ½Ö±ÏߵľàÀ빫ʽ£¬¿¼²éÁËÍÆÀíÄÜÁ¦Óë¼ÆËãÄÜÁ¦£¬ÊôÓÚÄÑÌ⣮
Ä꼶 | ¸ßÖÐ¿Î³Ì | Ä꼶 | ³õÖÐ¿Î³Ì |
¸ßÒ» | ¸ßÒ»Ãâ·Ñ¿Î³ÌÍƼö£¡ | ³õÒ» | ³õÒ»Ãâ·Ñ¿Î³ÌÍƼö£¡ |
¸ß¶þ | ¸ß¶þÃâ·Ñ¿Î³ÌÍƼö£¡ | ³õ¶þ | ³õ¶þÃâ·Ñ¿Î³ÌÍƼö£¡ |
¸ßÈý | ¸ßÈýÃâ·Ñ¿Î³ÌÍƼö£¡ | ³õÈý | ³õÈýÃâ·Ñ¿Î³ÌÍƼö£¡ |
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
A£® | ¶Û½ÇÈý½ÇÐÎ | B£® | Ö±½ÇÈý½ÇÐÎ | C£® | Èñ½ÇÈý½ÇÐÎ | D£® | ²»ÄÜÈ·¶¨ |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
×é±ð | PM2.5Ũ¶È£¨Î¢¿Ë/Á¢·½Ã×£© | ƵÊý£¨Ì죩 | ƵÂÊ |
µÚÒ»×é | £¨0£¬25] | 5 | 0.25 |
µÚ¶þ×é | £¨25£¬50] | 10 | 0.5 |
µÚÈý×é | £¨50£¬75] | 3 | 0.15 |
µÚËÄ×é | £¨75£¬100£© | 2 | 0.1 |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
°Ù¶ÈÖÂÐÅ - Á·Ï°²áÁбí - ÊÔÌâÁбí
ºþ±±Ê¡»¥ÁªÍøÎ¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨Æ½Ì¨ | ÍøÉÏÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | µçÐÅթƾٱ¨×¨Çø | ÉæÀúÊ·ÐéÎÞÖ÷ÒåÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | ÉæÆóÇÖȨ¾Ù±¨×¨Çø
Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com