精英家教网 > 高中数学 > 题目详情
8.已知函数y=3x,x∈[-1,2],则其值域是[-3,6].

分析 根据x的范围可以求出3x的范围,即求出y的范围,从而得出该函数的值域.

解答 解:x∈[-1,2];
∴3x∈[-3,6];
即y∈[-3,6];
∴该函数的值域为[-3,6].
故答案为:[-3,6].

点评 考查函数值域的概念,根据不等式的性质求函数值域的方法,以及一次函数的单调性.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

18.已知集合A={x|0≤x≤4},B={x|m+1≤x≤1-m},且CRA∩B=B,求实数m的取值范围?

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.点(2a-1,a)在直线x+2y-7=0上,则a=2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.函数f(x)=$\left\{\begin{array}{l}{(2a-1)x+3a,x≤1}\\{-x+a,x>1}\end{array}\right.$ 在R上单调递减,则实数a的取值范围0<a<$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.在固定压力差(压力差为常数)下,当气体通过圆形管道时,其流量速率v(单位:cm2/s)与管道半径r(单位:cm)的四次方成正比.
(1)写出气流流量速v关于管道半径r的函数解析式;
(2)若气体在半径为3cm的管道中,流量速率为400cm2/s,求该气体通过半径为r的管道时,其流量速率v的表达式;
(3)已知(2)中的气体通过的管道半径为5cm,计算该气体的流量速率(精确到1cm3/s).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.若x∈[1,+∞)时,函数f(x)=$\frac{{x}^{2}+2x+a}{x}$>0恒成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.函数f(x)=m•ax+$\frac{4}{m•{a}^{x}}$.(m>0,a>0,且a≠1)为偶函数.
(1)求m的值;
(2)用定义证明f(x)在区间(0,+∞)上的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知{an}是各项均为正数的等比数列,a1+a2+a3=64($\frac{1}{{a}_{1}}$+$\frac{1}{{a}_{2}}$+$\frac{1}{{a}_{3}}$),a${\;}_{{1}_{\;}}$+a2=2($\frac{1}{{a}_{1}}$+$\frac{1}{{a}_{2}}$).
(1)求数列{an}的通项公式;
(2)设bn=(an+$\frac{1}{{a}_{n}}$)2,求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.设向量$\vec a=(1,\;x)$,$\vec b=(x,4)$,则$x=\int_0^{\sqrt{2}}{2tdt}$是$\vec a$∥$\vec b$的(  )条件.
A.充分不必要B.必要不充分
C.充要D.即不充分也不必要

查看答案和解析>>

同步练习册答案