【题目】如图,已知抛物线的焦点为,椭圆的中心在原点,为其右焦点,点为曲线和在第一象限的交点,且.
(1)求椭圆的标准方程;
(2)设为抛物线上的两个动点,且使得线段的中点在直线上,
为定点,求面积的最大值.
【答案】(1)椭圆的标准方程为; (2)面积的最大值为.
【解析】
试题分析:(1)由已知得,跟据抛物线定义,得,所以点;据椭圆定义,得.
所以椭圆的标准方式是.(2)因为为线段的中点,得直线的方程为;联立,得,由弦长公式和点到直线的距离,得.
再根据函数的单调性得面积的最大值为.
试题解析:(1)设椭圆的方程为,半焦距为.
由已知,点,则.
设点,据抛物线定义,得.由已知,,则.
从而,所以点.
设点为椭圆的左焦点,则,.
据椭圆定义,得,则.
从而,所以椭圆的标准方式是.
(2)设点,,,则.
两式相减,得,即.因为为线段的中点,则.
所以直线的斜率.
从而直线的方程为,即.
联立,得,则.
所以.
设点到直线的距离为,则.
所以.
由,得.令,则.
设,则.
由,得.从而在上是增函数,在上是减函数,
所以,故面积的最大值为.
科目:高中数学 来源: 题型:
【题目】某中学为研究学生的身体素质与课外体育锻炼时间的关系,对该校200名学生的课外体育锻炼平均每天运动的时间(单位:分钟)进行调查,将收集的数据分成六组,并作出频率分布直方图(如图),将日均课外体育锻炼时间不低于40分钟的学生评价为“课外体育达标”.
(1)请根据直方图中的数据填写下面的列联表,并通过计算判断是否能在犯错误的概率不超过0.01的前提下认为“课外体育达标”与性别有关?
(2)在[0,10),[40,50)这两组中采取分层抽样,抽取6人,再从这6名学生中随机抽取2人参加体育知识问卷调查,求这2人中一人来自“课外体育达标”和一人来自“课外体育不达标”的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】(导学号:05856335)[选修4-4:坐标系与参数方程]
以原点为极点,x轴的非负半轴为极轴建立极坐标系.已知A(2,π),B(2, ),圆C的极坐标方程为ρ2-6ρcos θ+8ρsin θ+21=0.F为圆C上的任意一点.
(Ⅰ)写出圆C的参数方程;
(Ⅱ)求△ABF的面积的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=x2+(x-1)|x-a|.
(1)若a=-1,解方程f(x)=1;
(2)若函数f(x)在R上单调递增,求实数a的取值范围;
(3)是否存在实数a,使不等式f(x)≥2x-3对任意x∈R恒成立?若存在,求出a的取值范围;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】2017年10月份郑州市进行了高三学生的体育学业水平测试,为了考察高中学生的身体素质比情况,现抽取了某校1000名(男生800名,女生200名)学生的测试成绩,根据性别按分层抽样的方法抽取100名进行分析,得到如下统计图表:
男生测试情况:
抽样情况 | 病残免试 | 不合格 | 合格 | 良好 | 优秀 |
人数 | 5 | 10 | 15 | 47 |
女生测试情况
抽样情况 | 病残免试 | 不合格 | 合格 | 良好 | 优秀 |
人数 | 2 | 3 | 10 | 2 |
(1)现从抽取的1000名且测试等级为“优秀”的学生中随机选出两名学生,求选出的这两名学生恰好是一男一女的概率;
(2)若测试等级为“良好”或“优秀”的学生为“体育达人”,其它等级的学生(含病残免试)为“非体育达人”,根据以上统计数据填写下面列联表,并回答能否在犯错误的概率不超过0.010的前提下认为“是否为体育达人”与性别有关?
男性 | 女性 | 总计 | |
体育达人 | |||
非体育达人 | |||
总计 |
临界值表:
0.10 | 0.05 | 0.025 | 0.010 | 0.005 | |
2.706 | 3.841 | 5.024 | 6.635 | 7.879 |
附:( ,其中)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知集合A是函数y=lg(20﹣8x﹣x2)的定义域,集合B是不等式x2﹣2x+1﹣a2≥0(a>0)的解集,p:x∈A,q:x∈B.
(1)若A∩B=,求实数a的取值范围;
(2)若¬p是q的充分不必要条件,求实数a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,动点到点的距离和它到直线的距离相等,记点的轨迹为.
(Ⅰ)求得方程;
(Ⅱ)设点在曲线上, 轴上一点(在点右侧)满足.平行于的直线与曲线相切于点,试判断直线是否过定点?若过定点,求出定点坐标;若不过定点,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com