精英家教网 > 高中数学 > 题目详情

【题目】设f(x)是定义在R上的增函数,且对于任意的x都有f(1﹣x)+f(1+x)=0恒成立.如果实数m、n满足不等式组 , 那么m2+n2的取值范围是(  )
A.(3,7)
B.(9,25)
C.(13,49)
D.(9,49)

【答案】C
【解析】解:∵对于任意的x都有f(1﹣x)+f(1+x)=0恒成立
∴f(1﹣x)=﹣f(1+x)
∵f(m2﹣6m+23)+f(n2﹣8n)<0,
∴f(m2﹣6m+23)<﹣f[(1+(n2﹣8n﹣1)],
∴f(m2﹣6m+23)<f[(1﹣(n2﹣8n﹣1)]=f(2﹣n2+8n)
∵f(x)是定义在R上的增函数,
∴m2﹣6m+23<2﹣n2+8n
∴(m﹣3)2+(n﹣4)2<4
∵(m﹣3)2+(n﹣4)2=4的圆心坐标为:(3,4),半径为2
∴(m﹣3)2+(n﹣4)2=4(m>3)内的点到原点距离的取值范围为( , 5+2),即( , 7)
∵m2+n2 表示(m﹣3)2+(n﹣4)2=4内的点到原点距离的平方
∴m2+n2 的取值范围是(13,49).
故选C.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】我校举行的 “青年歌手大选赛”吸引了众多有才华的学生参赛.为了了解本次比赛成绩情况,从中抽取了50名学生的成绩(得分取正整数,满分为100分)作为样本进行统计.请根据下面尚未完成并有局部污损的频率分布表和频率分布直方图(如图所示)解决下列问题:

组别

分组

频数

频率

第1组

[50,60)

8

0.16

第2组

[60,70)

a

第3组

[70,80)

20

0.40

第4组

[80,90)

0.08

第5组

[90,100]

2

b

合计

(1)求出的值;

(2)在选取的样本中,从成绩是80分以上(含80分)的同学中随机抽取2名同学参加元旦晚会,求所抽取的2名同学中至少有1名同学来自第5组的概率;

(3)根据频率分布直方图,估计这50名学生成绩的众数、中位数和平均数。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列函数中,在区间(0,1)上是增函数的是(  )
A.y=|x|
B.y=3﹣x
C.y=
D.y=﹣x2+4

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校从参加高二某次月考的学生中随机抽取60名学生,将其数学成绩(均为整数)分成六组后得到如右所示的部分频率分布直方图。观察图形信息,回答下列问题:

(Ⅰ)求分数在内的频率;

(Ⅱ)用分层抽样的方法在分数段的学生中抽取一个容量为6的样本,再从该样本中任取2人,求至多有1人在分数段内的概率。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设=(1+cos x,1+sin x),=(1,0),=(1,2).
(1)求证:()⊥();
(2)求||的最大值,并求此时x的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一条光线从点(﹣2,﹣3)射出,经y轴反射后与圆(x+3)2+(y﹣2)2=1相切,则反射光线所在直线的斜率为(  )
A.﹣或﹣
B.﹣或﹣
C.﹣或﹣
D.﹣或﹣

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知在中,角的对边分别为,且.

(1)求的值;

(2)若,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=(x﹣a)(x﹣b)(其中a>b),若f(x)的图象如图所示,则函数g(x)=ax+b的图象大致为(  )

A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

已知直线为参数),曲线为参数).

(1)设相交于两点,求

(2)若把曲线上各点的横坐标压缩为原来的倍,纵坐标压缩为原来的倍,得到曲线,设点是曲线上的一个动点,求它到直线的距离的最小值.

查看答案和解析>>

同步练习册答案