分析 (1)令A(x1,y1),B(x2,y2),AB中点(x0,y0),利用点差法能求出直线AB的方程.
(2)令M(x1,y1),N(x2,y2),由$\left\{{\begin{array}{l}{{x^2}+2{y^2}=4}\\{y=k(x-\sqrt{2})+5\sqrt{2}}\end{array}}\right.$,得$(1+2{k^2}){x^2}+4\sqrt{2}k(5-k)x+4({k^2}-10k+24)=0$,由此利用根的判别式、韦达定理、向量知识,结合已知条件能求出|PM|•|PN|的取值范围.
解答 解:(1)令A(x1,y1),B(x2,y2),AB中点(x0,y0),
点A,B在椭圆上,有$\left\{{\begin{array}{l}{\frac{x_1^2}{4}+\frac{y_1^2}{2}=1}\\{\frac{x_2^2}{4}+\frac{y_2^2}{2}=1}\end{array}}\right.$,
∴$\frac{{({x_1}-{x_2})({x_1}+{x_2})}}{4}+\frac{{({y_1}-{y_2})({y_1}+{y_2})}}{2}=0$,
由${x_1}+{x_2}=2{x_0},{y_1}+{y_2}=2{y_0},\frac{{{y_1}-{y_2}}}{{{x_1}-{x_2}}}=\frac{1}{2}$,
得$\frac{x_0}{4}+\frac{1}{2}•\frac{y_0}{2}=0$,$\left\{{\begin{array}{l}{{x_0}+{y_0}=0}\\{{y_0}=-2{x_0}+1}\end{array}}\right.$,得$\left\{{\begin{array}{l}{{x_0}=1}\\{{y_0}=-1}\end{array}}\right.$,
因为AB中点(1,-1)在椭圆内,所以直线AB存在,
直线AB的方程是$y=\frac{1}{2}(x-1)-1$,即x-2y-3=0.
(2)令M(x1,y1),N(x2,y2),
由$\left\{{\begin{array}{l}{{x^2}+2{y^2}=4}\\{y=k(x-\sqrt{2})+5\sqrt{2}}\end{array}}\right.$,得$(1+2{k^2}){x^2}+4\sqrt{2}k(5-k)x+4({k^2}-10k+24)=0$,
△=16(k2+10k-24)>0,得k<-12或k>2,
由韦达定理得$\left\{{\begin{array}{l}{{x_1}+{x_2}=\frac{{-4\sqrt{2}k(5-k)}}{{1+2{k^2}}}}\\{{x_1}{x_2}=\frac{{4({k^2}-10k+24)}}{{1+2{k^2}}}}\end{array}}\right.$,
$|{PM}|•|{PN}|=(1+{k^2})|{{x_1}-\sqrt{2}}|•|{{x_2}-\sqrt{2}}|=(1+{k^2})[{x_1}{x_2}-\sqrt{2}({x_1}+{x_2})+2]$
=$\frac{{98({k^2}+1)}}{{1+2{k^2}}}=49(1+\frac{1}{{1+2{k^2}}})∈(49,\frac{490}{9})$.
∴|PM|•|PN|的取值范围是(49,$\frac{490}{9}$).
点评 本题考查直线方程的求法,考查两线段长的取值范围的求法,是中档题,解题时要认真审题,注意根的判别式、韦达定理、向量知识、椭圆性质的合理运用.
科目:高中数学 来源: 题型:选择题
A. | $\frac{5}{4}$ | B. | $\frac{5}{3}$ | C. | $\frac{20}{9}$ | D. | $\frac{12}{5}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | y=±$\frac{\sqrt{3}}{3}$x | B. | y=±$\sqrt{3}$x | C. | y=±$\frac{1}{3}$x | D. | y=±3x |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | Sn=2n+1-1 | B. | an=2n-1 | C. | Sn=2n+1-2 | D. | an=2n+1-3 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | (2,+∞) | B. | (0,2) | C. | ?$(2,2\sqrt{2})$ | D. | ($\sqrt{2}$,2) |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com