精英家教网 > 高中数学 > 题目详情

【题目】在直角坐标系中,已知曲线的参数方程为为参数),以原点为极点,轴正半轴为极轴建立极坐标系,直线的极坐标方程为:,直线的极坐标方程为

(Ⅰ)写出曲线的极坐标方程,并指出它是何种曲线;

(Ⅱ)设与曲线交于两点,与曲线交于两点,求四边形面积的取值范围.

【答案】(Ⅰ),圆;(Ⅱ).

【解析】

(Ⅰ)将参数方程化为普通方程,可知曲线是以为圆心,为半径的圆;根据直角坐标与极坐标互化原则可得到曲线的极坐标方程;(Ⅱ)设,联立与圆方程可得韦达定理的形式;则,整理可得,代入替换可求得;根据垂直关系可知所求面积为,根据三角函数知识可求得结果.

(Ⅰ)由为参数)消去参数得:

将曲线的方程化成极坐标方程得:

曲线是以为圆心,为半径的圆

(Ⅱ)设

与圆联立方程得:

三点共线

代替可得:

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】下表提供了某厂节能降耗技术改造后生产甲产品过程中记录的产量(吨)与相应的生产能耗(吨)标准煤的几组对照数据

(1)请根据上表提供的数据,用最小二乘法求出关于的线性回归方程

(2)已知该厂技改前100吨甲产品的生产能耗为90吨标准煤.试根据(1)求出的线性回归方程,预测生产100吨甲产品的生产能耗比技改前降低多少吨标准煤?

参考公式:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知实数,设函数

(1)当时,求函数的单调区间;

(2)对任意均有的取值范围.

注:为自然对数的底数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某中学从高三男生中随机抽取n名学生的身高,将数据整理,得到的频率分布表如表所示:

组号

分组

频数

频率

第1组

5

0.05

第2组

a

0.35

第3组

30

b

第4组

20

0.20

第5组

10

0.10

合计

n

1.00

(1)求出频率分布表中的值,并完成下列频率分布直方图;

(2)为了能对学生的体能做进一步了解,该校决定在第1,4,5组中用分层抽样取7名学生进行不同项目的体能测试,若在这7名学生中随机抽取2名学生进行引体向上测试,求第4组中至少有一名学生被抽中的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了选派学生参加“厦门市中学生知识竞赛”,某校对本校2000名学生进行选拔性测试,得到成绩的频率分布直方图(如图).规定:成绩大于或等于110分的学生有参赛资格,成绩110分以下(不包括110分)的学生则被淘汰.

1)求获得参赛资格的学生人数;

2)根据频率分布直方图,估算这2000名学生测试的平均成绩(同组中的数据用该组区间点值作代表);

3)若知识竞赛分初赛和复赛,在初赛中有两种答题方案:

方案一:每人从5道备选题中任意抽出1道,若答对,则可参加复赛,否则被淘汰;

方案二:每人从5道备选题中任意抽出3道,若至少答对其中2道,则可参加复赛,否则被海汰.

已知学生甲只会5道备选题中的3道,那么甲选择哪种答题方案,进入复赛的可能性更大?并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若函数只有一个极值点,则k的取值范围为

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中, 圆 的内切圆.其中.

(1)求圆的方程及 点坐标;

(2)在直线 上是否存在异于的定点使得对圆上任意一点,都有为常数 )?若存在,求出点 的坐标及的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】“垛积术”(隙积术)是由北宋科学家沈括在《梦溪笔谈》中首创,南宋科学家杨辉、元代数学家朱世杰丰富和发展的一类数列求和方法,有菱草垛、方垛、三角垛等等,某仓库中部分货物堆放成“菱草垛”,自上而下,第一层1件,以后每一层比上一层多1件,最后一层是件,已知第一层货物单价1万元,从第二层起,货物的单价是上一层单价的,若这堆货物总价是万元,则的值为________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线l与两坐标轴围成的三角形的面积为3,分别求满足下列条件的直线l的方程:

1)过定点A(-34);

2)斜率为

查看答案和解析>>

同步练习册答案