精英家教网 > 高中数学 > 题目详情

【题目】已知二次函数f(x)=x2﹣2x+3 (Ⅰ)若函数 的最小值为3,求实数m的值;
(Ⅱ)若对任意互不相同的x1 , x2∈(2,4),都有|f(x1)﹣f(x2)|<k|x1﹣x2|成立,求实数k的取值范围.

【答案】解(Ⅰ)令t=log3x+m,∵ ,∴t∈[m﹣1,m+1],

从而y=f(t)=t2﹣2t+3=(t﹣1)2+2,t∈[m﹣1,m+1]

当m+1≤1,即m≤0时,

解得m=﹣1或m=1(舍去),

当m﹣1<1<m+1,即0<m<2时,ymin=f(1)=2,不合题意,

当m﹣1≥1,即m≥2时,

解得m=3或m=1(舍去),

综上得,m=﹣1或m=3,

(Ⅱ)不妨设x1<x2,易知f(x)在(2,4)上是增函数,故f(x1)<f(x2),

故|f(x1)﹣f(x2)|<k|x1﹣x2|可化为f(x2)﹣f(x1)<kx2﹣kx1

即f(x2)﹣kx2<f(x1)﹣kx1(*),

令g(x)=f(x)﹣kx,x∈(2,4),即g(x)=x2﹣(2+k)x+3,x∈(2,4),

则(*)式可化为g(x2)<g(x1),即g(x)在(2,4)上是减函数,

,得k≥6,

故k的取值范围为[6,+∞)


【解析】(Ⅰ)令t=log3x,(﹣1≤t≤1),则y=(t+m﹣1)2+2,由题意可得最小值只能在端点处取得,分别求得m的值,加以检验即可得到所求值;(Ⅱ)判断f(x)在(2,4)递增,设x1>x2,则f(x1)>f(x2),原不等式即为f(x1)﹣f(x2)<k(x1﹣x2),即有f(x1)﹣kx1<f(x2)﹣kx2,由题意可得g(x)=f(x)﹣kx在(2,4)递减.由g(x)=x2﹣(2+k)x+3,求得对称轴,由二次函数的单调区间,即可得到所求范围
【考点精析】掌握二次函数的性质是解答本题的根本,需要知道增减性:当a>0时,对称轴左边,y随x增大而减小;对称轴右边,y随x增大而增大;当a<0时,对称轴左边,y随x增大而增大;对称轴右边,y随x增大而减小.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知两条直线 ,两个平面 ,给出下面四个命题:
;②
;④
其中正确命题的序号是( )
A.①④
B.②④
C.①③
D.②③

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数f(x)=2sin(2x+ )的图象为M,则下列结论中正确的是(
A.图象M关于直线x=﹣ 对称
B.由y=2sin2x的图象向左平移 得到M
C.图象M关于点(﹣ ,0)对称
D.f(x)在区间(﹣ )上递增

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=sin(2x+φ1),g(x)=cos(4x+φ2),|φ1|≤ ,|φ2|≤ . 命题①:若直线x=φ是函数f(x)和g(x)的对称轴,则直线x= kπ+φ(k∈Z)是函数g(x)的对称轴;
命题②:若点P(φ,0)是函数f(x)和g(x)的对称中心,则点Q( +φ,0)(k∈Z)是函数f(x)的中心对称.(
A.命题①②都正确
B.命题①②都不正确
C.命题①正确,命题②不正确
D.命题①不正确,命题②正确

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知集合A={1,2},B={x|(x2+ax)(x2+ax+2)=0},记集合A中元素的个数为n(A),定义m(A,B)= ,若m(A,B)=1,则正实数a的值是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知实数集R,集合A={x|1<x<3},集合B={x|y= },则A∩(RB)=(
A.{x|1<x≤2}
B.{x|1<x<3}
C.{x|2≤x<3}
D.{x|1<x<2}

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某班有学生50人,其中男同学30人,用分层抽样的方法从该班抽取5人去参加某社区服务活动.
(1)求从该班男女同学在各抽取的人数;
(2)从抽取的5名同学中任选2名谈此活动的感受,求选出的2名同学中恰有1名男同学的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知f(x)是定义在R上的奇函数,当x≥0时,f(x)=2x﹣x2 , 若存在实数a,b,使f(x)在[a,b]上的值域为[ ],则ab=

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,有一块半径为2的半圆形钢板,计划剪裁成等腰梯形ABCD的形状,它的下底AB是⊙O的直径,上底CD的端点在圆周上.设∠DAB=θ(0<θ< ),L为等腰梯形ABCD的周长.
(1)求周长L与θ的函数解析式;
(2)试问周长L是否存在最大值?若存在,请求出最大值,并指出此时θ的大小;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案