精英家教网 > 高中数学 > 题目详情

椭圆C: 左右焦,若椭圆C上恰有4个不同的点P,使得为等腰三角形,则C的离心率的取值范围是 _______

)∪(,1)

解析试题分析:分两种情况:第一种情况,当点P与短轴的顶点重合时,△F1F2P构成以F1F2为底边的等腰三角形,此种情况有2个满足条件的等腰△F1F2P;第二种情况,当△F1F2P构成以F1F2为一腰的等腰三角形时,以F2P作为等腰三角形的底边为例,∵F1F2=F1P,∴点P在以F1为圆心,半径为焦距2c的圆上,因此,当以F1为圆心,半径为2c的圆与椭圆C有2交点时,存在2个满足条件的等腰△F1F2P,此时a-c<2c,解得a<3c,所以离心率e,当e=时,△F1F2P是等边三角形,与①中的三角形重复,故e≠,同理,当F1P为等腰三角形的底边时,在e且e≠时也存在2个满足条件的等腰△F1F2P这样,又因为椭圆C上恰有4个不同的点P,使得为等腰三角形,故第一种情况不成立,综上所述,离心率的取值范围是:e∈()∪(,1).
考点:直线与椭圆的位置关系.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

双曲线的离心率等于____________.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

是双曲线的右支上一点,分别是圆上的点,则的最大值等于           .

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

已知椭圆E的左右焦点分别F1,F2,过F1且斜率为2的直线交椭圆E于P、Q两点,若△PF1F2为直角三角形,则椭圆E的离心率为     .

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

抛物线的焦点坐标为              

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

(已知双曲线的中心在坐标原点,焦点在轴上,A是右顶点,B是虚轴的上端点,F是左焦点,
当BF⊥AB时,此类双曲线称为“黄金双曲线”,其离心率为,类比“黄金双曲线”,推算出“黄金椭圆”(如图)的离心率=_________;

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

[2013·陕西高考]双曲线=1的离心率为,则m等于________.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

已知斜率为2的直线l过抛物线y2=px(p>0)的焦点F,且与y轴相交于点A.若△OAF(O为坐标原点)的面积为1,则p=________.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

抛物线y=2x2的准线方程是________.

查看答案和解析>>

同步练习册答案